Articles | Volume 10, issue 3
https://doi.org/10.5194/amt-10-881-2017
https://doi.org/10.5194/amt-10-881-2017
Research article
 | 
09 Mar 2017
Research article |  | 09 Mar 2017

In-operation field-of-view retrieval (IFR) for satellite and ground-based DOAS-type instruments applying coincident high-resolution imager data

Holger Sihler, Peter Lübcke, Rüdiger Lang, Steffen Beirle, Martin de Graaf, Christoph Hörmann, Johannes Lampel, Marloes Penning de Vries, Julia Remmers, Ed Trollope, Yang Wang, and Thomas Wagner

Related authors

MICRU: an effective cloud fraction algorithm designed for UV–vis satellite instruments with large viewing angles
Holger Sihler, Steffen Beirle, Steffen Dörner, Marloes Gutenstein-Penning de Vries, Christoph Hörmann, Christian Borger, Simon Warnach, and Thomas Wagner
Atmos. Meas. Tech., 14, 3989–4031, https://doi.org/10.5194/amt-14-3989-2021,https://doi.org/10.5194/amt-14-3989-2021, 2021
Short summary
Time-dependent 3D simulations of tropospheric ozone depletion events in the Arctic spring using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem)
Maximilian Herrmann, Holger Sihler, Udo Frieß, Thomas Wagner, Ulrich Platt, and Eva Gutheil
Atmos. Chem. Phys., 21, 7611–7638, https://doi.org/10.5194/acp-21-7611-2021,https://doi.org/10.5194/acp-21-7611-2021, 2021
Short summary
Total column water vapour retrieval from S-5P/TROPOMI in the visible blue spectral range
Christian Borger, Steffen Beirle, Steffen Dörner, Holger Sihler, and Thomas Wagner
Atmos. Meas. Tech., 13, 2751–2783, https://doi.org/10.5194/amt-13-2751-2020,https://doi.org/10.5194/amt-13-2751-2020, 2020
Short summary
On the contribution of chemical oscillations to ozone depletion events in the polar spring
Maximilian Herrmann, Le Cao, Holger Sihler, Ulrich Platt, and Eva Gutheil
Atmos. Chem. Phys., 19, 10161–10190, https://doi.org/10.5194/acp-19-10161-2019,https://doi.org/10.5194/acp-19-10161-2019, 2019
Short summary
Is a scaling factor required to obtain closure between measured and modelled atmospheric O4 absorptions? An assessment of uncertainties of measurements and radiative transfer simulations for 2 selected days during the MAD-CAT campaign
Thomas Wagner, Steffen Beirle, Nuria Benavent, Tim Bösch, Ka Lok Chan, Sebastian Donner, Steffen Dörner, Caroline Fayt, Udo Frieß, David García-Nieto, Clio Gielen, David González-Bartolome, Laura Gomez, François Hendrick, Bas Henzing, Jun Li Jin, Johannes Lampel, Jianzhong Ma, Kornelia Mies, Mónica Navarro, Enno Peters, Gaia Pinardi, Olga Puentedura, Janis Puķīte, Julia Remmers, Andreas Richter, Alfonso Saiz-Lopez, Reza Shaiganfar, Holger Sihler, Michel Van Roozendael, Yang Wang, and Margarita Yela
Atmos. Meas. Tech., 12, 2745–2817, https://doi.org/10.5194/amt-12-2745-2019,https://doi.org/10.5194/amt-12-2745-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Assessing Arctic low-level clouds and precipitation from above – a radar perspective
Imke Schirmacher, Pavlos Kollias, Katia Lamer, Mario Mech, Lukas Pfitzenmaier, Manfred Wendisch, and Susanne Crewell
Atmos. Meas. Tech., 16, 4081–4100, https://doi.org/10.5194/amt-16-4081-2023,https://doi.org/10.5194/amt-16-4081-2023, 2023
Short summary
What CloudSat cannot see: liquid water content profiles inferred from MODIS and CALIOP observations
Richard M. Schulte, Matthew D. Lebsock, and John M. Haynes
Atmos. Meas. Tech., 16, 3531–3546, https://doi.org/10.5194/amt-16-3531-2023,https://doi.org/10.5194/amt-16-3531-2023, 2023
Short summary
Validation of the Cloud_CCI (Cloud Climate Change Initiative) cloud products in the Arctic
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech., 16, 2903–2918, https://doi.org/10.5194/amt-16-2903-2023,https://doi.org/10.5194/amt-16-2903-2023, 2023
Short summary
The Education and Research 3D Radiative Transfer Toolbox (EaR3T) – towards the mitigation of 3D bias in airborne and spaceborne passive imagery cloud retrievals
Hong Chen, K. Sebastian Schmidt, Steven T. Massie, Vikas Nataraja, Matthew S. Norgren, Jake J. Gristey, Graham Feingold, Robert E. Holz, and Hironobu Iwabuchi
Atmos. Meas. Tech., 16, 1971–2000, https://doi.org/10.5194/amt-16-1971-2023,https://doi.org/10.5194/amt-16-1971-2023, 2023
Short summary
Retrieval of microphysical parameters of monsoonal rain using X-band dual-polarization radar: their seasonal dependence and evaluation
Kumar Abhijeet, Thota Narayana Rao, Nidamanuri Rama Rao, and Kasimahanthi Amar Jyothi
Atmos. Meas. Tech., 16, 871–888, https://doi.org/10.5194/amt-16-871-2023,https://doi.org/10.5194/amt-16-871-2023, 2023
Short summary

Cited articles

Barnes, W., Pagano, T. S., and Salomonson, V.: Prelaunch Characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE Trans. Geosci. Remote Sens., 36, 1088–1100, https://doi.org/10.1109/36.700993, 1998.
Bluth, G. J. S., Shannon, J. M., Watson, I. M., Prata, A. J., and Realmuto, V. J.: Development of an ultra-violet digital camera for volcanic SO2 imaging, J. Volcanol. Geoth. Res., 161, 47–56, https://doi.org/10.1016/j.jvolgeores.2006.11.004, 2007.
Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., and Lefebvre, A.: GOME-2 – MetOp's Second-Generation Sensor for Operational Ozone Monitoring, ESA Bulletin, 102, 28–36, 2000.
Campagnolo, M. L. and Montaño, E. L.: Estimation of Effective Resolution for Daily MODIS Gridded Surface Reflectance Products, IEEE Trans. Geosci. Remote Sens., 52, 5622–5632, https://doi.org/10.1109/TGRS.2013.2291496, 2014.
Cracknell, A.: The Advanced Very High Resolution Radiometer, Taylor and Francis, London, ISBN 9780748402090, 1997.
Download
Short summary
This paper presents the independent and simple IFR method to retrieve the FOV of an instrument, i.e. the two-dimensional sensitivity distribution. IFR relies on correlated measurements featuring a higher spatial resolution and was applied to two satellite instruments, GOME-2 and OMI, and a DOAS instrument integrated in an SO2 camera. Our results confirm the commonly applied FOV distributions. IFR is applicable for verification exercises as well as degradation monitoring in the field.