Articles | Volume 11, issue 8
https://doi.org/10.5194/amt-11-4693-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/amt-11-4693-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the improved stability of the version 7 MIPAS ozone record
Alexandra Laeng
CORRESPONDING AUTHOR
Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany
Ellen Eckert
Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany
Thomas von Clarmann
Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany
Michael Kiefer
Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany
Daan Hubert
Belgian Institute for Space Aeronomy (BIRA-IASB), Synergistic exploitation of atmospheric data, Brussels, Belgium
Gabriele Stiller
Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany
Norbert Glatthor
Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany
Manuel López-Puertas
Instituto de Astrofísica de Andalucía-CSIC, Granada, Spain
Bernd Funke
Instituto de Astrofísica de Andalucía-CSIC, Granada, Spain
Udo Grabowski
Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany
Johannes Plieninger
Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany
Sylvia Kellmann
Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany
Andrea Linden
Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany
Stefan Lossow
Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany
Arne Babenhauserheide
Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany
Lucien Froidevaux
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
Kaley Walker
Department of Physics, Toronto, University of Toronto, Canada
Related authors
Norbert Glatthor, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 17, 2849–2871, https://doi.org/10.5194/amt-17-2849-2024, https://doi.org/10.5194/amt-17-2849-2024, 2024
Short summary
Short summary
We present global atmospheric methane (CH4) and nitrous oxide (N2O) distributions retrieved from measurements of the MIPAS instrument on board the Environmental Satellite (Envisat) during 2002 to 2012. Monitoring of these gases is of scientific interest because both of them are strong greenhouse gases. We analyze the latest, improved version of calibrated MIPAS measurements. Further, we apply a new retrieval scheme leading to an improved CH4 and N2O data product .
Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Bernd Funke, Maya García-Comas, and Manuel López-Puertas
Atmos. Meas. Tech., 17, 1759–1789, https://doi.org/10.5194/amt-17-1759-2024, https://doi.org/10.5194/amt-17-1759-2024, 2024
Short summary
Short summary
CFC-11, CFC-12, and HCFC-22 contribute to the depletion of ozone and are potent greenhouse gases. They have been banned by the Montreal protocol. With MIPAS on Envisat the atmospheric composition could be observed between 2002 and 2012. We present here the retrieval of their atmospheric distributions for the final data version 8. We characterise the derived data by their error budget and their spatial resolution. An additional representation for direct comparison to models is also provided.
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 5609–5645, https://doi.org/10.5194/amt-16-5609-2023, https://doi.org/10.5194/amt-16-5609-2023, 2023
Short summary
Short summary
This paper describes a new version (V8) of ozone data from MIPAS middle-atmosphere spectra. The dataset comprises high-quality ozone profiles from 20 to 100 km, with pole-to-pole latitude coverage for the day- and nighttime, spanning 2005 until 2012. An exhaustive treatment of errors has been performed. Compared to other satellite instruments, MIPAS ozone shows a positive bias of 5 %–8 % below 70 km. In the upper mesosphere, this new version agrees much better than previous ones (within 10 %).
Monali Borthakur, Miriam Sinnhuber, Alexandra Laeng, Thomas Reddmann, Peter Braesicke, Gabriele Stiller, Thomas von Clarmann, Bernd Funke, Ilya Usoskin, Jan Maik Wissing, and Olesya Yakovchuk
Atmos. Chem. Phys., 23, 12985–13013, https://doi.org/10.5194/acp-23-12985-2023, https://doi.org/10.5194/acp-23-12985-2023, 2023
Short summary
Short summary
Reduced ozone levels resulting from ozone depletion mean more exposure to UV radiation, which has various effects on human health. We analysed solar events to see what influence it has on the chemistry of Earth's atmosphere and how this atmospheric chemistry change can affect the ozone. To do this, we used an atmospheric model considering only chemistry and compared it with satellite data. The focus was mainly on the contribution of chlorine, and we found about 10 %–20 % ozone loss due to that.
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Carlo Arosio, Alexei Rozanov, Mark Weber, Doug Degenstein, Adam Bourassa, Daniel Zawada, Michael Kiefer, Alexandra Laeng, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Christian Retscher, Robert Damadeo, and Jerry D. Lumpe
Atmos. Meas. Tech., 16, 1881–1899, https://doi.org/10.5194/amt-16-1881-2023, https://doi.org/10.5194/amt-16-1881-2023, 2023
Short summary
Short summary
The paper presents the updated SAGE-CCI-OMPS+ climate data record of monthly zonal mean ozone profiles. This dataset covers the stratosphere and combines measurements by nine limb and occultation satellite instruments (SAGE II, OSIRIS, MIPAS, SCIAMACHY, GOMOS, ACE-FTS, OMPS-LP, POAM III, and SAGE III/ISS). The update includes new versions of MIPAS, ACE-FTS, and OSIRIS datasets and introduces data from additional sensors (POAM III and SAGE III/ISS) and retrieval processors (OMPS-LP).
Michael Kiefer, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 1443–1460, https://doi.org/10.5194/amt-16-1443-2023, https://doi.org/10.5194/amt-16-1443-2023, 2023
Short summary
Short summary
A new ozone data set, derived from radiation measurements of the space-borne instrument MIPAS, is presented. It consists of more than 2 million single ozone profiles from 2002–2012, covering virtually all latitudes and altitudes between 5 and 70 km. Progress in data calibration and processing methods allowed for significant improvement of the data quality, compared to previous data versions. Hence, the data set will help to better understand e.g. the time evolution of ozone in the stratosphere.
Carlo Arosio, Alexei Rozanov, Victor Gorshelev, Alexandra Laeng, and John P. Burrows
Atmos. Meas. Tech., 15, 5949–5967, https://doi.org/10.5194/amt-15-5949-2022, https://doi.org/10.5194/amt-15-5949-2022, 2022
Short summary
Short summary
This paper characterizes the uncertainties affecting the ozone profiles retrieved at the University of Bremen through OMPS limb satellite observations. An accurate knowledge of the uncertainties is relevant for the validation of the product and to correctly interpret the retrieval results. We investigate several sources of uncertainties, estimate a total random and systematic component, and verify the consistency of the combined OMPS-MLS total uncertainty.
Alexandra Laeng, Thomas von Clarmann, Quentin Errera, Udo Grabowski, and Shawn Honomichl
Atmos. Meas. Tech., 15, 2407–2416, https://doi.org/10.5194/amt-15-2407-2022, https://doi.org/10.5194/amt-15-2407-2022, 2022
Short summary
Short summary
In validation exercises, a universal excuse used to explain the residual discrepancy between the data is the natural atmospheric variability due to imperfect co-locations. This work is the first attempt to quantify this atmospheric variability for a large sample of atmospheric constituents and to provide the user with a tool to substract the natural atmospheric variability portion from the residual variability.
Michael Kiefer, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Anne Kleinert, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, Daniel R. Marsh, and Gabriele P. Stiller
Atmos. Meas. Tech., 14, 4111–4138, https://doi.org/10.5194/amt-14-4111-2021, https://doi.org/10.5194/amt-14-4111-2021, 2021
Short summary
Short summary
An improved dataset of vertical temperature profiles of the Earth's atmosphere in the altitude range 5–70 km is presented. These profiles are derived from measurements of the MIPAS instrument onboard ESA's Envisat satellite. The overall improvements are based on upgrades in the input data and several improvements in the data processing approach. Both of these are discussed, and an extensive error discussion is included. Enhancements of the new dataset are demonstrated by means of examples.
Viktoria F. Sofieva, Monika Szeląg, Johanna Tamminen, Erkki Kyrölä, Doug Degenstein, Chris Roth, Daniel Zawada, Alexei Rozanov, Carlo Arosio, John P. Burrows, Mark Weber, Alexandra Laeng, Gabriele P. Stiller, Thomas von Clarmann, Lucien Froidevaux, Nathaniel Livesey, Michel van Roozendael, and Christian Retscher
Atmos. Chem. Phys., 21, 6707–6720, https://doi.org/10.5194/acp-21-6707-2021, https://doi.org/10.5194/acp-21-6707-2021, 2021
Short summary
Short summary
The MErged GRIdded Dataset of Ozone Profiles is a long-term (2001–2018) stratospheric ozone profile climate data record with resolved longitudinal structure that combines the data from six limb satellite instruments. The dataset can be used for various analyses, some of which are discussed in the paper. In particular, regionally and vertically resolved ozone trends are evaluated, including trends in the polar regions.
Thomas von Clarmann, Douglas A. Degenstein, Nathaniel J. Livesey, Stefan Bender, Amy Braverman, André Butz, Steven Compernolle, Robert Damadeo, Seth Dueck, Patrick Eriksson, Bernd Funke, Margaret C. Johnson, Yasuko Kasai, Arno Keppens, Anne Kleinert, Natalya A. Kramarova, Alexandra Laeng, Bavo Langerock, Vivienne H. Payne, Alexei Rozanov, Tomohiro O. Sato, Matthias Schneider, Patrick Sheese, Viktoria Sofieva, Gabriele P. Stiller, Christian von Savigny, and Daniel Zawada
Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020, https://doi.org/10.5194/amt-13-4393-2020, 2020
Short summary
Short summary
Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. This paper summarizes related techniques and provides recommendations for unified error reporting.
Norbert Glatthor, Thomas von Clarmann, Gabriele P. Stiller, Michael Kiefer, Alexandra Laeng, Bianca M. Dinelli, Gerald Wetzel, and Johannes Orphal
Atmos. Meas. Tech., 11, 4707–4723, https://doi.org/10.5194/amt-11-4707-2018, https://doi.org/10.5194/amt-11-4707-2018, 2018
Short summary
Short summary
We report differences in ozone retrievals in channels A and AB of the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which amount to up to 8 %. We provide strong evidence that the bias is caused by inconsistencies in different spectroscopic databases (MIPAS, HITRAN, GEISA). We show that a major part of the differences can be attributed to inconsistent air-broadening coefficients of the ozone lines contained in the databases.
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Angela Gardini, Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Alexandra Laeng, Martin Kaufmann, Viktoria F. Sofieva, Lucien Froidevaux, Kaley A. Walker, and Masato Shiotani
Atmos. Meas. Tech., 11, 2187–2212, https://doi.org/10.5194/amt-11-2187-2018, https://doi.org/10.5194/amt-11-2187-2018, 2018
Short summary
Short summary
This paper describes the inversion of O3 data from MIPAS middle atmosphere spectra which requires non-LTE. The O3 dataset comprises from 20 to 100 km, has a pole-to-pole latitude coverage, day and nighttime, and span from 2005 until 2012. A validation of the data against other satellite measurements and an overall description of O3 is also presented. This is an important dataset for the community and describes the major characteristics of stratospheric and mesospheric O3.
Viktoria F. Sofieva, Erkki Kyrölä, Marko Laine, Johanna Tamminen, Doug Degenstein, Adam Bourassa, Chris Roth, Daniel Zawada, Mark Weber, Alexei Rozanov, Nabiz Rahpoe, Gabriele Stiller, Alexandra Laeng, Thomas von Clarmann, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Claus Zehner, Robert Damadeo, Joseph Zawodny, Natalya Kramarova, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 12533–12552, https://doi.org/10.5194/acp-17-12533-2017, https://doi.org/10.5194/acp-17-12533-2017, 2017
Short summary
Short summary
We present a merged dataset of ozone profiles from several satellite instruments: SAGE II, GOMOS, SCIAMACHY, MIPAS, OSIRIS, ACE-FTS and OMPS. For merging, we used the latest versions of the original ozone datasets.
The merged SAGE–CCI–OMPS dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997.
Wolfgang Steinbrecht, Lucien Froidevaux, Ryan Fuller, Ray Wang, John Anderson, Chris Roth, Adam Bourassa, Doug Degenstein, Robert Damadeo, Joe Zawodny, Stacey Frith, Richard McPeters, Pawan Bhartia, Jeannette Wild, Craig Long, Sean Davis, Karen Rosenlof, Viktoria Sofieva, Kaley Walker, Nabiz Rahpoe, Alexei Rozanov, Mark Weber, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Natalya Kramarova, Sophie Godin-Beekmann, Thierry Leblanc, Richard Querel, Daan Swart, Ian Boyd, Klemens Hocke, Niklaus Kämpfer, Eliane Maillard Barras, Lorena Moreira, Gerald Nedoluha, Corinne Vigouroux, Thomas Blumenstock, Matthias Schneider, Omaira García, Nicholas Jones, Emmanuel Mahieu, Dan Smale, Michael Kotkamp, John Robinson, Irina Petropavlovskikh, Neil Harris, Birgit Hassler, Daan Hubert, and Fiona Tummon
Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, https://doi.org/10.5194/acp-17-10675-2017, 2017
Short summary
Short summary
Thanks to the 1987 Montreal Protocol and its amendments, ozone-depleting chlorine (and bromine) in the stratosphere has declined slowly since the late 1990s. Improved and extended long-term ozone profile observations from satellites and ground-based stations confirm that ozone is responding as expected and has increased by about 2 % per decade since 2000 in the upper stratosphere, around 40 km altitude. At lower altitudes, however, ozone has not changed significantly since 2000.
Ellen Eckert, Thomas von Clarmann, Alexandra Laeng, Gabriele P. Stiller, Bernd Funke, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Arne Babenhauserheide, Gerald Wetzel, Christopher Boone, Andreas Engel, Jeremy J. Harrison, Patrick E. Sheese, Kaley A. Walker, and Peter F. Bernath
Atmos. Meas. Tech., 10, 2727–2743, https://doi.org/10.5194/amt-10-2727-2017, https://doi.org/10.5194/amt-10-2727-2017, 2017
Short summary
Short summary
We retrieved vertical profiles of CCl4 from MIPAS Envisat IMK/IAA data. A detailed description of all characteristics is included in the paper as well as comparisons with historical measurements and comparisons with collocated measurements of instruments covering the same time span as MIPAS Envisat. A particular focus also lies on the usage of a new CCl4 spectroscopic dataset introduced recently, which leads to more realistic CCl4 volume mixing ratios.
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary
Short summary
Climate data records (CDRs) contain data describing Earth's climate and should address uncertainty in the data to communicate what is known about climate variability or change and what range of doubt exists. This paper discusses good practice for including uncertainty information in CDRs for the essential climate variables (ECVs) derived from satellite data. Recommendations emerge from the shared experience of diverse ECV projects within the European Space Agency Climate Change Initiative.
Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Bianca Maria Dinelli, Anu Dudhia, Piera Raspollini, Norbert Glatthor, Udo Grabowski, Viktoria Sofieva, Lucien Froidevaux, Kaley A. Walker, and Claus Zehner
Atmos. Meas. Tech., 10, 1511–1518, https://doi.org/10.5194/amt-10-1511-2017, https://doi.org/10.5194/amt-10-1511-2017, 2017
Short summary
Short summary
A MIPAS instrument was flown in 2002–2012 on the Envisat satellite and measured atmospheric composition. There exist four processors retrieving atmospheric profiles from MIPAS spectra. We performed a mathematically clean merging of 2007–2008 datasets of ozone from these four processors. The merged product was compared with ozone datasets from ACE-FTS and MLS instruments. The advantages and the shortcomings of this merged product are discussed.
E. Eckert, A. Laeng, S. Lossow, S. Kellmann, G. Stiller, T. von Clarmann, N. Glatthor, M. Höpfner, M. Kiefer, H. Oelhaf, J. Orphal, B. Funke, U. Grabowski, F. Haenel, A. Linden, G. Wetzel, W. Woiwode, P. F. Bernath, C. Boone, G. S. Dutton, J. W. Elkins, A. Engel, J. C. Gille, F. Kolonjari, T. Sugita, G. C. Toon, and K. A. Walker
Atmos. Meas. Tech., 9, 3355–3389, https://doi.org/10.5194/amt-9-3355-2016, https://doi.org/10.5194/amt-9-3355-2016, 2016
Short summary
Short summary
We investigate the accuracy, precision and long-term stability of the MIPAS Envisat IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) products.
For comparisons we use several data products from satellite, airplane and balloon-borne instruments as well as ground-based data.
MIPAS Envisat CFC-11 has a slight high bias at the lower end of the profile.
CFC-12 agrees well with other data products.
The temporal stability is good up to ~ 30 km, but still leaves room for improvement.
M. Chirkov, G. P. Stiller, A. Laeng, S. Kellmann, T. von Clarmann, C. D. Boone, J. W. Elkins, A. Engel, N. Glatthor, U. Grabowski, C. M. Harth, M. Kiefer, F. Kolonjari, P. B. Krummel, A. Linden, C. R. Lunder, B. R. Miller, S. A. Montzka, J. Mühle, S. O'Doherty, J. Orphal, R. G. Prinn, G. Toon, M. K. Vollmer, K. A. Walker, R. F. Weiss, A. Wiegele, and D. Young
Atmos. Chem. Phys., 16, 3345–3368, https://doi.org/10.5194/acp-16-3345-2016, https://doi.org/10.5194/acp-16-3345-2016, 2016
Short summary
Short summary
HCFC-22 global distributions from MIPAS measurements for 2005 to 2012 are presented. Tropospheric trends are in good agreement with ground-based observations. A layer of enhanced HCFC-22 in the upper tropospheric tropics and northern subtropics is identified to come from Asian sources uplifted in the Asian monsoon. Stratospheric distributions provide show seasonal, semi-annual, and QBO-related variations. Hemispheric asymmetries of trends hint towards a change in the stratospheric circulation.
Johannes Plieninger, Alexandra Laeng, Stefan Lossow, Thomas von Clarmann, Gabriele P. Stiller, Sylvia Kellmann, Andrea Linden, Michael Kiefer, Kaley A. Walker, Stefan Noël, Mark E. Hervig, Martin McHugh, Alyn Lambert, Joachim Urban, James W. Elkins, and Donal Murtagh
Atmos. Meas. Tech., 9, 765–779, https://doi.org/10.5194/amt-9-765-2016, https://doi.org/10.5194/amt-9-765-2016, 2016
Short summary
Short summary
We compare concentration profiles of methane and nitrous oxide measured from MIPAS-ENVISAT and derived with a new retrieval setup to those measured by other satellite instruments and to surface measurements. For methane we use profiles measured by ACE-FTS, HALOE and SCIAMACHY; for nitrous oxide we use profiles measured by ACE-FTS, Aura-MLS and Odin-SMR for the comparisons. We give a quantitative bias estimation and compare the estimated errors provided by the instruments.
A. Laeng, J. Plieninger, T. von Clarmann, U. Grabowski, G. Stiller, E. Eckert, N. Glatthor, F. Haenel, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, L. Deaver, A. Engel, M. Hervig, I. Levin, M. McHugh, S. Noël, G. Toon, and K. Walker
Atmos. Meas. Tech., 8, 5251–5261, https://doi.org/10.5194/amt-8-5251-2015, https://doi.org/10.5194/amt-8-5251-2015, 2015
J. Plieninger, T. von Clarmann, G. P. Stiller, U. Grabowski, N. Glatthor, S. Kellmann, A. Linden, F. Haenel, M. Kiefer, M. Höpfner, A. Laeng, and S. Lossow
Atmos. Meas. Tech., 8, 4657–4670, https://doi.org/10.5194/amt-8-4657-2015, https://doi.org/10.5194/amt-8-4657-2015, 2015
Short summary
Short summary
We present our revised CH4 and N2O profiles derived from MIPAS-ENVISAT spectra, which are now available for the entire measurement period. We describe the retrieval of the profiles and discuss the improvements compared to earlier versions and their effect on the mixing ratios. We analyse the averaging kernels and the resolution of the profiles. An error discussion for both gases is given.
N. Rahpoe, M. Weber, A. V. Rozanov, K. Weigel, H. Bovensmann, J. P. Burrows, A. Laeng, G. Stiller, T. von Clarmann, E. Kyrölä, V. F. Sofieva, J. Tamminen, K. Walker, D. Degenstein, A. E. Bourassa, R. Hargreaves, P. Bernath, J. Urban, and D. P. Murtagh
Atmos. Meas. Tech., 8, 4369–4381, https://doi.org/10.5194/amt-8-4369-2015, https://doi.org/10.5194/amt-8-4369-2015, 2015
Short summary
Short summary
The analyses among six satellite instruments measuring ozone reveals that the relative drift between the sensors is not significant in the stratosphere and we conclude that merging of data from these instruments is possible. The merged ozone profiles can then be ingested in global climate models for long-term forecasts of ozone and climate change in the atmosphere. The added drift uncertainty is estimated at about 3% per decade (1 sigma) and should be applied in the calculation of ozone trends.
A. Laeng, U. Grabowski, T. von Clarmann, G. Stiller, N. Glatthor, M. Höpfner, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, V. Sofieva, I. Petropavlovskikh, D. Hubert, T. Bathgate, P. Bernath, C. D. Boone, C. Clerbaux, P. Coheur, R. Damadeo, D. Degenstein, S. Frith, L. Froidevaux, J. Gille, K. Hoppel, M. McHugh, Y. Kasai, J. Lumpe, N. Rahpoe, G. Toon, T. Sano, M. Suzuki, J. Tamminen, J. Urban, K. Walker, M. Weber, and J. Zawodny
Atmos. Meas. Tech., 7, 3971–3987, https://doi.org/10.5194/amt-7-3971-2014, https://doi.org/10.5194/amt-7-3971-2014, 2014
V. F. Sofieva, J. Tamminen, E. Kyrölä, A. Laeng, T. von Clarmann, F. Dalaudier, A. Hauchecorne, J.-L. Bertaux, G. Barrot, L. Blanot, D. Fussen, and F. Vanhellemont
Atmos. Meas. Tech., 7, 2147–2158, https://doi.org/10.5194/amt-7-2147-2014, https://doi.org/10.5194/amt-7-2147-2014, 2014
V. F. Sofieva, N. Rahpoe, J. Tamminen, E. Kyrölä, N. Kalakoski, M. Weber, A. Rozanov, C. von Savigny, A. Laeng, T. von Clarmann, G. Stiller, S. Lossow, D. Degenstein, A. Bourassa, C. Adams, C. Roth, N. Lloyd, P. Bernath, R. J. Hargreaves, J. Urban, D. Murtagh, A. Hauchecorne, F. Dalaudier, M. van Roozendael, N. Kalb, and C. Zehner
Earth Syst. Sci. Data, 5, 349–363, https://doi.org/10.5194/essd-5-349-2013, https://doi.org/10.5194/essd-5-349-2013, 2013
Sujan Khanal, Matthew Toohey, Adam Bourassa, C. Thomas McElroy, Christopher Sioris, and Kaley A. Walker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3286, https://doi.org/10.5194/egusphere-2024-3286, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Measurements of stratospheric aerosol from the MAESTRO instrument are compared to other measurements to assess their scientific value. We find that medians of MAESTRO measurements binned by month and latitude show reasonable correlation with other data sets, with notable increases after volcanic eruptions, and that biases in the data can be alleviated through a simple correction technique. Used with care, MAESTRO aerosol measurements provide information that can complement other data sets.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, and David A. Plummer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2946, https://doi.org/10.5194/egusphere-2024-2946, 2024
Short summary
Short summary
Observations from ACE-FTS are used to examine global stratospheric water vapour trends for 2004–2021. The satellite measurements are used to quantify trend contributions arising from changes in tropical tropopause temperatures, general circulation patterns, and methane concentrations. While most of the observed trends can be explained by these changes, there remains an unaccounted for and increasing source of water vapour in the lower mid-stratosphere at midlatitudes, which is discussed.
Audrey Gaudel, Ilann Bourgeois, Meng Li, Kai-Lan Chang, Jerald Ziemke, Bastien Sauvage, Ryan M. Stauffer, Anne M. Thompson, Debra E. Kollonige, Nadia Smith, Daan Hubert, Arno Keppens, Juan Cuesta, Klaus-Peter Heue, Pepijn Veefkind, Kenneth Aikin, Jeff Peischl, Chelsea R. Thompson, Thomas B. Ryerson, Gregory J. Frost, Brian C. McDonald, and Owen R. Cooper
Atmos. Chem. Phys., 24, 9975–10000, https://doi.org/10.5194/acp-24-9975-2024, https://doi.org/10.5194/acp-24-9975-2024, 2024
Short summary
Short summary
The study examines tropical tropospheric ozone changes. In situ data from 1994–2019 display increased ozone, notably over India, Southeast Asia, and Malaysia and Indonesia. Sparse in situ data limit trend detection for the 15-year period. In situ and satellite data, with limited sampling, struggle to consistently detect trends. Continuous observations are vital over the tropical Pacific Ocean, Indian Ocean, western Africa, and South Asia for accurate ozone trend estimation in these regions.
Florian Voet, Felix Plöger, Johannes Laube, Peter Preusse, Paul Konopka, Jens-Uwe Grooß, Jörn Ungermann, Björn-Martin Sinnhuber, Michael Hoepfner, Bernd Funke, Gerald Wetzel, Sören Johansson, Gabriele Stiller, Eric Ray, and Michaela Imelda Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2624, https://doi.org/10.5194/egusphere-2024-2624, 2024
Short summary
Short summary
This study refines estimates of the stratospheric “age of air,” a measure of how long air circulates in the stratosphere. By analyzing correlations between trace gases measurable by satellites, the research introduces a method that reduces uncertainties and detects small-scale atmospheric features. This improved understanding of stratospheric circulation is crucial for better climate models and predictions, enhancing our ability to assess the impacts of climate change on the atmosphere.
Paul S. Jeffery, James R. Drummond, C. Thomas McElroy, Kaley A. Walker, and Jiansheng Zou
EGUsphere, https://doi.org/10.5194/egusphere-2024-2115, https://doi.org/10.5194/egusphere-2024-2115, 2024
Short summary
Short summary
The MAESTRO instrument has been monitoring ozone and NO2 since February 2004. A new version of these data products has recently been released; however, these new products must be validated against other datasets to ensure their validity. This study presents such an assessment, using measurements from eleven satellite instruments to characterize the new MAESTRO products. In the stratosphere, good agreement is found for ozone and acceptable agreement is found for NO2 with these other datasets.
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256, https://doi.org/10.5194/egusphere-2024-2256, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Formation of nitric oxide NO in the upper atmosphere varies with solar activity. Observations show that it starts a chain of processes in the entire atmosphere affecting the ozone layer and climate system. This is often underestimated in models. We compare five models which show large differences in simulated NO. Analysis of results point out problems related to the oxygen balance, and to the impact of atmospheric waves on dynamics. Both must be modeled well to reproduce the downward coupling.
Laura N. Saunders, Kaley A. Walker, Gabriele P. Stiller, Thomas von Clarmann, Florian Haenel, Hella Garny, Harald Bönisch, Chris D. Boone, Ariana E. Castillo, Andreas Engel, Johannes C. Laube, Marianna Linz, Felix Ploeger, David A. Plummer, Eric A. Ray, and Patrick E. Sheese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2117, https://doi.org/10.5194/egusphere-2024-2117, 2024
Short summary
Short summary
We present a 17-year stratospheric age of air dataset derived from ACE-FTS satellite measurements of sulfur hexafluoride. This is the longest continuous, global, and vertically resolved age of air time series available to date. In this paper, we show that this dataset agrees well with age of air datasets based on measurements from other instruments. We also present trends in the midlatitude lower stratosphere that indicate changes in the global circulation that are predicted by climate models.
Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Norbert Glatthor, Thomas Gulde, Vincent Huijnen, Anne Kleinert, Erik Kretschmer, Guido Maucher, Tom Neubert, Hans Nordmeyer, Christof Piesch, Peter Preusse, Martin Riese, Björn-Martin Sinnhuber, Jörn Ungermann, Gerald Wetzel, and Wolfgang Woiwode
Atmos. Chem. Phys., 24, 8125–8138, https://doi.org/10.5194/acp-24-8125-2024, https://doi.org/10.5194/acp-24-8125-2024, 2024
Short summary
Short summary
We present airborne infrared limb sounding GLORIA measurements of ammonia (NH3) in the upper troposphere of air masses within the Asian monsoon and of those connected with biomass burning. Comparing CAMS (Copernicus Atmosphere Monitoring Service) model data, we find that the model reproduces the measured enhanced NH3 within the Asian monsoon well but not that within biomass burning plumes, where no enhanced NH3 is measured in the upper troposphere but considerable amounts are simulated by CAMS.
Kimberlee Dube, Susann Tegtmeier, Felix Ploeger, and Kaley A. Walker
EGUsphere, https://doi.org/10.5194/egusphere-2024-1736, https://doi.org/10.5194/egusphere-2024-1736, 2024
Short summary
Short summary
The transport rate of air in the stratosphere has changed in response to human emissions of greenhouse gases and ozone depleting substances. This transport rate can be approximated using measurements of long-lived traces gases. We use observations and model results to derive anomalies and trends in the mean rate of stratospheric air transport. We find that air in the northern hemisphere aged by up to 0.3 years/decade relative to air in the southern hemisphere over 2004–2017.
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024, https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Short summary
In the Observed Composition Trends And Variability in the UTLS (OCTAV-UTLS) Stratosphere-troposphere Processes And their Role in Climate (SPARC) activity, we have mapped multiplatform ozone datasets into coordinate systems to systematically evaluate the influence of these coordinates on binned climatological variability. This effort unifies the work of studies that focused on individual coordinate system variability. Our goal was to create the most comprehensive assessment of this topic.
Jiansheng Zou, Kaley A. Walker, Patrick E. Sheese, Chris D. Boone, Ryan M. Stauffer, Anne M. Thompson, and David W. Tarasick
EGUsphere, https://doi.org/10.5194/egusphere-2024-1916, https://doi.org/10.5194/egusphere-2024-1916, 2024
Short summary
Short summary
Ozone measurements from the ACE-FTS satellite instrument have been compared to worldwide balloon-borne ozonesonde profiles using pairs of closely-spaced profiles and monthly averaged profiles. ACE-FTS typically measures more ozone in the stratosphere by up to 10 %. The long-term stability of the ACE-FTS ozone data is good exhibiting small (but not significant) drifts of less than 3 % per decade in the stratosphere. Lower in the profiles, the calculated drifts are larger (up to 10 % per decade).
Arno Keppens, Serena Di Pede, Daan Hubert, Jean-Christopher Lambert, Pepijn Veefkind, Maarten Sneep, Johan De Haan, Mark ter Linden, Thierry Leblanc, Steven Compernolle, Tijl Verhoelst, José Granville, Oindrila Nath, Ann Mari Fjæraa, Ian Boyd, Sander Niemeijer, Roeland Van Malderen, Herman G. J. Smit, Valentin Duflot, Sophie Godin-Beekmann, Bryan J. Johnson, Wolfgang Steinbrecht, David W. Tarasick, Debra E. Kollonige, Ryan M. Stauffer, Anne M. Thompson, Angelika Dehn, and Claus Zehner
Atmos. Meas. Tech., 17, 3969–3993, https://doi.org/10.5194/amt-17-3969-2024, https://doi.org/10.5194/amt-17-3969-2024, 2024
Short summary
Short summary
The Sentinel-5P satellite operated by the European Space Agency has carried the TROPOspheric Monitoring Instrument (TROPOMI) around the Earth since October 2017. This mission also produces atmospheric ozone profile data which are described in detail for May 2018 to April 2023. Independent validation using ground-based reference measurements demonstrates that the operational ozone profile product mostly fully and at least partially complies with all mission requirements.
Norbert Glatthor, Gabriele P. Stiller, Thomas von Clarmann, Bernd Funke, Sylvia Kellmann, and Andrea Linden
EGUsphere, https://doi.org/10.5194/egusphere-2024-1793, https://doi.org/10.5194/egusphere-2024-1793, 2024
Short summary
Short summary
We present global upper tropospheric distributions of the pollutants HCN, CO, C2H2, C2H6, PAN and HCOOH, observed by MIPAS/Envisat between 2002 and 2012. This common view allows conclusions on the sources of the different pollutants, like, e.g., biomass burning, anthropogenic sources or biogenic release. For this purpose we compare their VMR distributions and additionally perform global correlation and regression analyses.
Karen De Los Ríos, Paulina Ordoñez, Gabriele P. Stiller, Piera Raspollini, Marco Gai, Kaley A. Walker, Cristina Peña-Ortiz, and Luis Acosta
Atmos. Meas. Tech., 17, 3401–3418, https://doi.org/10.5194/amt-17-3401-2024, https://doi.org/10.5194/amt-17-3401-2024, 2024
Short summary
Short summary
This study examines newer versions of H2O and HDO retrievals from Envisat/MIPAS and SCISAT/ACE-FTS. Results reveal a better agreement in stratospheric H2O profiles than in HDO profiles. The H2O tape recorder signal is consistent across databases, but δD tape recorder composites show differences that impact the interpretation of water vapour transport. These findings enhance the need for intercomparisons to refine our insights.
Manuel López-Puertas, Federico Fabiano, Victor Fomichev, Bernd Funke, and Daniel R. Marsh
Geosci. Model Dev., 17, 4401–4432, https://doi.org/10.5194/gmd-17-4401-2024, https://doi.org/10.5194/gmd-17-4401-2024, 2024
Short summary
Short summary
The radiative infrared cooling of CO2 in the middle atmosphere is crucial for computing its thermal structure. It requires one however to include non-local thermodynamic equilibrium processes which are computationally very expensive, which cannot be afforded by climate models. In this work, we present an updated, efficient, accurate and very fast (~50 µs) parameterization of that cooling able to cope with CO2 abundances from half the pre-industrial values to 10 times the current abundance.
Jin Ma, Linda M. J. Kooijmans, Norbert Glatthor, Stephen A. Montzka, Marc von Hobe, Thomas Röckmann, and Maarten C. Krol
Atmos. Chem. Phys., 24, 6047–6070, https://doi.org/10.5194/acp-24-6047-2024, https://doi.org/10.5194/acp-24-6047-2024, 2024
Short summary
Short summary
The global budget of atmospheric COS can be optimised by inverse modelling using TM5-4DVAR, with the co-constraints of NOAA surface observations and MIPAS satellite data. We found reduced COS biosphere uptake from inversions and improved land and ocean separation using MIPAS satellite data assimilation. Further improvements are expected from better quantification of COS ocean and biosphere fluxes.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Norbert Glatthor, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 17, 2849–2871, https://doi.org/10.5194/amt-17-2849-2024, https://doi.org/10.5194/amt-17-2849-2024, 2024
Short summary
Short summary
We present global atmospheric methane (CH4) and nitrous oxide (N2O) distributions retrieved from measurements of the MIPAS instrument on board the Environmental Satellite (Envisat) during 2002 to 2012. Monitoring of these gases is of scientific interest because both of them are strong greenhouse gases. We analyze the latest, improved version of calibrated MIPAS measurements. Further, we apply a new retrieval scheme leading to an improved CH4 and N2O data product .
Felicia Kolonjari, Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, David A. Plummer, Andreas Engel, Stephen A. Montzka, David E. Oram, Tanja Schuck, Gabriele P. Stiller, and Geoffrey C. Toon
Atmos. Meas. Tech., 17, 2429–2449, https://doi.org/10.5194/amt-17-2429-2024, https://doi.org/10.5194/amt-17-2429-2024, 2024
Short summary
Short summary
The Canadian Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) satellite instrument is currently providing the only vertically resolved chlorodifluoromethane (HCFC-22) measurements from space. This study assesses the most current ACE-FTS HCFC-22 data product in the upper troposphere and lower stratosphere, as well as modelled HCFC-22 from a 39-year run of the Canadian Middle Atmosphere Model (CMAM39) in the same region.
Hella Garny, Roland Eichinger, Johannes C. Laube, Eric A. Ray, Gabriele P. Stiller, Harald Bönisch, Laura Saunders, and Marianna Linz
Atmos. Chem. Phys., 24, 4193–4215, https://doi.org/10.5194/acp-24-4193-2024, https://doi.org/10.5194/acp-24-4193-2024, 2024
Short summary
Short summary
Transport circulation in the stratosphere is important for the distribution of tracers, but its strength is hard to measure. Mean transport times can be inferred from observations of trace gases with certain properties, such as sulfur hexafluoride (SF6). However, this gas has a chemical sink in the high atmosphere, which can lead to substantial biases in inferred transport times. In this paper we present a method to correct mean transport times derived from SF6 for the effects of chemical sinks.
Paul S. Jeffery, James R. Drummond, Jiansheng Zou, and Kaley A. Walker
Atmos. Chem. Phys., 24, 4253–4263, https://doi.org/10.5194/acp-24-4253-2024, https://doi.org/10.5194/acp-24-4253-2024, 2024
Short summary
Short summary
The MOPITT instrument has been monitoring carbon monoxide (CO) since March 2000. This dataset has been used for many applications; however, episodic emission events, which release large amounts of CO into the atmosphere, are a major source of uncertainty. This study presents a method for identifying these events by determining measurements that are unlikely to have typically arisen. The distribution and frequency of these flagged measurements in the MOPITT dataset are presented and discussed.
Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Bernd Funke, Maya García-Comas, and Manuel López-Puertas
Atmos. Meas. Tech., 17, 1759–1789, https://doi.org/10.5194/amt-17-1759-2024, https://doi.org/10.5194/amt-17-1759-2024, 2024
Short summary
Short summary
CFC-11, CFC-12, and HCFC-22 contribute to the depletion of ozone and are potent greenhouse gases. They have been banned by the Montreal protocol. With MIPAS on Envisat the atmospheric composition could be observed between 2002 and 2012. We present here the retrieval of their atmospheric distributions for the final data version 8. We characterise the derived data by their error budget and their spatial resolution. An additional representation for direct comparison to models is also provided.
Bernd Funke, Thierry Dudok de Wit, Ilaria Ermolli, Margit Haberreiter, Doug Kinnison, Daniel Marsh, Hilde Nesse, Annika Seppälä, Miriam Sinnhuber, and Ilya Usoskin
Geosci. Model Dev., 17, 1217–1227, https://doi.org/10.5194/gmd-17-1217-2024, https://doi.org/10.5194/gmd-17-1217-2024, 2024
Short summary
Short summary
We outline a road map for the preparation of a solar forcing dataset for the upcoming Phase 7 of the Coupled Model Intercomparison Project (CMIP7), considering the latest scientific advances made in the reconstruction of solar forcing and in the understanding of climate response while also addressing the issues that were raised during CMIP6.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
Andrea Pazmiño, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, and Kaley A. Walker
Atmos. Chem. Phys., 23, 15655–15670, https://doi.org/10.5194/acp-23-15655-2023, https://doi.org/10.5194/acp-23-15655-2023, 2023
Short summary
Short summary
The vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from the SAOZ network and MSR2 reanalysis. Three metrics were developed to compute ozone trends since 2000. The study confirms the ozone recovery in the Antarctic and shows a potential sign of quantitative detection of ozone recovery in the Arctic that needs to be robustly confirmed in the future.
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 5609–5645, https://doi.org/10.5194/amt-16-5609-2023, https://doi.org/10.5194/amt-16-5609-2023, 2023
Short summary
Short summary
This paper describes a new version (V8) of ozone data from MIPAS middle-atmosphere spectra. The dataset comprises high-quality ozone profiles from 20 to 100 km, with pole-to-pole latitude coverage for the day- and nighttime, spanning 2005 until 2012. An exhaustive treatment of errors has been performed. Compared to other satellite instruments, MIPAS ozone shows a positive bias of 5 %–8 % below 70 km. In the upper mesosphere, this new version agrees much better than previous ones (within 10 %).
Maya García-Comas, Bernd Funke, Manuel López-Puertas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Belén Martínez-Mondéjar, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 5357–5386, https://doi.org/10.5194/amt-16-5357-2023, https://doi.org/10.5194/amt-16-5357-2023, 2023
Short summary
Short summary
We have released version 8 of MIPAS IMK–IAA temperatures and pointing information retrieved from MIPAS Middle and Upper Atmosphere mode version 8.03 calibrated spectra, covering 20–115 km altitude. We considered non-local thermodynamic equilibrium emission explicitly for each limb scan, essential to retrieve accurate temperatures above the mid-mesosphere. Comparisons of this temperature dataset with SABER measurements show excellent agreement, improving those of previous MIPAS versions.
Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Patrick E. Sheese, Kaley A. Walker, and William Randel
Atmos. Chem. Phys., 23, 13283–13300, https://doi.org/10.5194/acp-23-13283-2023, https://doi.org/10.5194/acp-23-13283-2023, 2023
Short summary
Short summary
This paper presents a technique for understanding the causes of long-term changes in stratospheric composition. By using N2O as a proxy for stratospheric circulation in the model used to calculated trends, it is possible to separate the effects of dynamics and chemistry on observed trace gas trends. We find that observed HCl increases are due to changes in the stratospheric circulation, as are O3 decreases above 30 hPa in the Northern Hemisphere.
Monali Borthakur, Miriam Sinnhuber, Alexandra Laeng, Thomas Reddmann, Peter Braesicke, Gabriele Stiller, Thomas von Clarmann, Bernd Funke, Ilya Usoskin, Jan Maik Wissing, and Olesya Yakovchuk
Atmos. Chem. Phys., 23, 12985–13013, https://doi.org/10.5194/acp-23-12985-2023, https://doi.org/10.5194/acp-23-12985-2023, 2023
Short summary
Short summary
Reduced ozone levels resulting from ozone depletion mean more exposure to UV radiation, which has various effects on human health. We analysed solar events to see what influence it has on the chemistry of Earth's atmosphere and how this atmospheric chemistry change can affect the ozone. To do this, we used an atmospheric model considering only chemistry and compared it with satellite data. The focus was mainly on the contribution of chlorine, and we found about 10 %–20 % ozone loss due to that.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
Luis F. Millán, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
Atmos. Meas. Tech., 16, 2957–2988, https://doi.org/10.5194/amt-16-2957-2023, https://doi.org/10.5194/amt-16-2957-2023, 2023
Short summary
Short summary
The determination of atmospheric composition trends in the upper troposphere and lower stratosphere (UTLS) is still highly uncertain. We present the creation of dynamical diagnostics to map several ozone datasets (ozonesondes, lidars, aircraft, and satellite measurements) in geophysically based coordinate systems. The diagnostics can also be used to analyze other greenhouse gases relevant to surface climate and UTLS chemistry.
Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Manuel López-Puertas, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 2167–2196, https://doi.org/10.5194/amt-16-2167-2023, https://doi.org/10.5194/amt-16-2167-2023, 2023
Short summary
Short summary
New global nitric oxide (NO) volume-mixing-ratio and lower-thermospheric temperature data products, retrieved from Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) spectra with the IMK-IAA MIPAS data processor, have been released. The dataset covers the entire Envisat mission lifetime and includes retrieval results from all MIPAS observation modes. The data are based on ESA version 8 calibration and were processed using an improved retrieval approach.
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Carlo Arosio, Alexei Rozanov, Mark Weber, Doug Degenstein, Adam Bourassa, Daniel Zawada, Michael Kiefer, Alexandra Laeng, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Christian Retscher, Robert Damadeo, and Jerry D. Lumpe
Atmos. Meas. Tech., 16, 1881–1899, https://doi.org/10.5194/amt-16-1881-2023, https://doi.org/10.5194/amt-16-1881-2023, 2023
Short summary
Short summary
The paper presents the updated SAGE-CCI-OMPS+ climate data record of monthly zonal mean ozone profiles. This dataset covers the stratosphere and combines measurements by nine limb and occultation satellite instruments (SAGE II, OSIRIS, MIPAS, SCIAMACHY, GOMOS, ACE-FTS, OMPS-LP, POAM III, and SAGE III/ISS). The update includes new versions of MIPAS, ACE-FTS, and OSIRIS datasets and introduces data from additional sensors (POAM III and SAGE III/ISS) and retrieval processors (OMPS-LP).
Michael Kiefer, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 1443–1460, https://doi.org/10.5194/amt-16-1443-2023, https://doi.org/10.5194/amt-16-1443-2023, 2023
Short summary
Short summary
A new ozone data set, derived from radiation measurements of the space-borne instrument MIPAS, is presented. It consists of more than 2 million single ozone profiles from 2002–2012, covering virtually all latitudes and altitudes between 5 and 70 km. Progress in data calibration and processing methods allowed for significant improvement of the data quality, compared to previous data versions. Hence, the data set will help to better understand e.g. the time evolution of ozone in the stratosphere.
Nasrin Mostafavi Pak, Jacob K. Hedelius, Sébastien Roche, Liz Cunningham, Bianca Baier, Colm Sweeney, Coleen Roehl, Joshua Laughner, Geoffrey Toon, Paul Wennberg, Harrison Parker, Colin Arrowsmith, Joseph Mendonca, Pierre Fogal, Tyler Wizenberg, Beatriz Herrera, Kimberly Strong, Kaley A. Walker, Felix Vogel, and Debra Wunch
Atmos. Meas. Tech., 16, 1239–1261, https://doi.org/10.5194/amt-16-1239-2023, https://doi.org/10.5194/amt-16-1239-2023, 2023
Short summary
Short summary
Ground-based remote sensing instruments in the Total Carbon Column Observing Network (TCCON) measure greenhouse gases in the atmosphere. Consistency between TCCON measurements is crucial to accurately infer changes in atmospheric composition. We use portable remote sensing instruments (EM27/SUN) to evaluate biases between TCCON stations in North America. We also improve the retrievals of EM27/SUN instruments and evaluate the previous (GGG2014) and newest (GGG2020) retrieval algorithms.
Joshua L. Laughner, Sébastien Roche, Matthäus Kiel, Geoffrey C. Toon, Debra Wunch, Bianca C. Baier, Sébastien Biraud, Huilin Chen, Rigel Kivi, Thomas Laemmel, Kathryn McKain, Pierre-Yves Quéhé, Constantina Rousogenous, Britton B. Stephens, Kaley Walker, and Paul O. Wennberg
Atmos. Meas. Tech., 16, 1121–1146, https://doi.org/10.5194/amt-16-1121-2023, https://doi.org/10.5194/amt-16-1121-2023, 2023
Short summary
Short summary
Observations using sunlight to measure surface-to-space total column of greenhouse gases in the atmosphere need an initial guess of the vertical distribution of those gases to start from. We have developed an approach to provide those initial guess profiles that uses readily available meteorological data as input. This lets us make these guesses without simulating them with a global model. The profiles generated this way match independent observations well.
Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Bernd Funke, Michael Kiefer, Anne Kleinert, Gabriele P. Stiller, Andrea Linden, and Sylvia Kellmann
Atmos. Meas. Tech., 15, 6991–7018, https://doi.org/10.5194/amt-15-6991-2022, https://doi.org/10.5194/amt-15-6991-2022, 2022
Short summary
Short summary
Errors of profiles of temperature and mixing ratios retrieved from spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding are estimated. All known and quantified sources of uncertainty are considered. Some ongoing uncertaities contribute to both the random and to the systematic errors. In some cases, one source of uncertainty propagates onto the error budget via multiple pathways. Problems arise when the correlations of errors to be propagated are unknown.
Ali Jalali, Kaley A. Walker, Kimberly Strong, Rebecca R. Buchholz, Merritt N. Deeter, Debra Wunch, Sébastien Roche, Tyler Wizenberg, Erik Lutsch, Erin McGee, Helen M. Worden, Pierre Fogal, and James R. Drummond
Atmos. Meas. Tech., 15, 6837–6863, https://doi.org/10.5194/amt-15-6837-2022, https://doi.org/10.5194/amt-15-6837-2022, 2022
Short summary
Short summary
This study validates MOPITT version 8 carbon monoxide measurements over the Canadian high Arctic for the period 2006 to 2019. The MOPITT products from different detector pixels and channels are compared with ground-based measurements from the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada. These results show good consistency between the satellite and ground-based measurements and provide guidance on the usage of these MOPITT data at high latitudes.
Paul S. Jeffery, Kaley A. Walker, Chris E. Sioris, Chris D. Boone, Doug Degenstein, Gloria L. Manney, C. Thomas McElroy, Luis Millán, David A. Plummer, Niall J. Ryan, Patrick E. Sheese, and Jiansheng Zou
Atmos. Chem. Phys., 22, 14709–14734, https://doi.org/10.5194/acp-22-14709-2022, https://doi.org/10.5194/acp-22-14709-2022, 2022
Short summary
Short summary
The upper troposphere–lower stratosphere is one of the most variable regions in the atmosphere. To improve our understanding of water vapour and ozone concentrations in this region, climatologies have been developed from 14 years of measurements from three Canadian satellite instruments. Horizontal and vertical coordinates have been chosen to minimize the effects of variability. To aid in analysis, model simulations have been used to characterize differences between instrument climatologies.
Kimberlee Dubé, Daniel Zawada, Adam Bourassa, Doug Degenstein, William Randel, David Flittner, Patrick Sheese, and Kaley Walker
Atmos. Meas. Tech., 15, 6163–6180, https://doi.org/10.5194/amt-15-6163-2022, https://doi.org/10.5194/amt-15-6163-2022, 2022
Short summary
Short summary
Satellite observations are important for monitoring changes in atmospheric composition. Here we describe an improved version of the NO2 retrieval for the Optical Spectrograph and InfraRed Imager System. The resulting NO2 profiles are compared to those from the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer and the Stratospheric Aerosol and Gas Experiment III on the International Space Station. All datasets agree within 20 % throughout the stratosphere.
Carlo Arosio, Alexei Rozanov, Victor Gorshelev, Alexandra Laeng, and John P. Burrows
Atmos. Meas. Tech., 15, 5949–5967, https://doi.org/10.5194/amt-15-5949-2022, https://doi.org/10.5194/amt-15-5949-2022, 2022
Short summary
Short summary
This paper characterizes the uncertainties affecting the ozone profiles retrieved at the University of Bremen through OMPS limb satellite observations. An accurate knowledge of the uncertainties is relevant for the validation of the product and to correctly interpret the retrieval results. We investigate several sources of uncertainties, estimate a total random and systematic component, and verify the consistency of the combined OMPS-MLS total uncertainty.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
EGUsphere, https://doi.org/10.5194/egusphere-2022-696, https://doi.org/10.5194/egusphere-2022-696, 2022
Preprint archived
Short summary
Short summary
Snow pack in high Arctic plays a key role in polar atmospheric chemistry, especially in spring when photochemistry becomes active. By sampling surface snow from a Canadian high Arctic location at Eureka, Nunavut (80° N, 86° W), we demonstrate that surface snow is a net sink rather than a source of atmospheric reactive bromine and nitrate. This finding is new and opposite to previous conclusions that snowpack is a large and direct source of reactive bromine in polar spring.
Sophie Godin-Beekmann, Niramson Azouz, Viktoria F. Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Doug A. Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, Roeland Van Malderen, Emmanuel Mahieu, Dan Smale, and Ralf Sussmann
Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022, https://doi.org/10.5194/acp-22-11657-2022, 2022
Short summary
Short summary
An updated evaluation up to 2020 of stratospheric ozone profile long-term trends at extrapolar latitudes based on satellite and ground-based records is presented. Ozone increase in the upper stratosphere is confirmed, with significant trends at most latitudes. In this altitude region, a very good agreement is found with trends derived from chemistry–climate model simulations. Observed and modelled trends diverge in the lower stratosphere, but the differences are non-significant.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Alexandra Laeng, Thomas von Clarmann, Quentin Errera, Udo Grabowski, and Shawn Honomichl
Atmos. Meas. Tech., 15, 2407–2416, https://doi.org/10.5194/amt-15-2407-2022, https://doi.org/10.5194/amt-15-2407-2022, 2022
Short summary
Short summary
In validation exercises, a universal excuse used to explain the residual discrepancy between the data is the natural atmospheric variability due to imperfect co-locations. This work is the first attempt to quantify this atmospheric variability for a large sample of atmospheric constituents and to provide the user with a tool to substract the natural atmospheric variability portion from the residual variability.
Piera Raspollini, Enrico Arnone, Flavio Barbara, Massimo Bianchini, Bruno Carli, Simone Ceccherini, Martyn P. Chipperfield, Angelika Dehn, Stefano Della Fera, Bianca Maria Dinelli, Anu Dudhia, Jean-Marie Flaud, Marco Gai, Michael Kiefer, Manuel López-Puertas, David P. Moore, Alessandro Piro, John J. Remedios, Marco Ridolfi, Harjinder Sembhi, Luca Sgheri, and Nicola Zoppetti
Atmos. Meas. Tech., 15, 1871–1901, https://doi.org/10.5194/amt-15-1871-2022, https://doi.org/10.5194/amt-15-1871-2022, 2022
Short summary
Short summary
The MIPAS instrument onboard the ENVISAT satellite provided 10 years of measurements of the atmospheric emission al limb that allow for the retrieval of latitude- and altitude-resolved atmospheric composition. We describe the improvements implemented in the retrieval algorithm used for the full mission reanalysis, which allows for the generation of the global distributions of 21 atmospheric constituents plus temperature with increased accuracy with respect to previously generated data.
Sören Johansson, Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Michael Höpfner, Anne Kleinert, Tom Neubert, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 22, 3675–3691, https://doi.org/10.5194/acp-22-3675-2022, https://doi.org/10.5194/acp-22-3675-2022, 2022
Short summary
Short summary
We present GLORIA airborne cross sections of PAN, C2H6, HCOOH, CH3OH, and C2H4 in the South Atlantic UTLS in September/October 2019. Filamentary structures and a large plume were observed. Backward trajectories indicate that measured pollutants come from South America and central Africa. Comparisons to CAMS show structural agreement of the measured distributions. PAN absolute VMRs agree with the GLORIA measurements, C2H6 and HCOOH are simulated too low, and CH3OH and C2H4 are too high.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Adam E. Bourassa, Doug A. Degenstein, Lucien Froidevaux, C. Thomas McElroy, Donal Murtagh, James M. Russell III, and Jiansheng Zou
Atmos. Meas. Tech., 15, 1233–1249, https://doi.org/10.5194/amt-15-1233-2022, https://doi.org/10.5194/amt-15-1233-2022, 2022
Short summary
Short summary
This study analyzes the quality of two versions (v3.6 and v4.1) of ozone concentration measurements from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), by comparing with data from five satellite instruments between 2004 and 2020. It was found that although the v3.6 data exhibit a better agreement than v4.1 with respect to the other instruments, v4.1 exhibits much better stability over time than v3.6. The stability of v4.1 makes it suitable for ozone trend studies.
Thomas von Clarmann, Steven Compernolle, and Frank Hase
Atmos. Meas. Tech., 15, 1145–1157, https://doi.org/10.5194/amt-15-1145-2022, https://doi.org/10.5194/amt-15-1145-2022, 2022
Short summary
Short summary
Contrary to the claims put forward in
Evaluation of measurement data – Guide to the expression of uncertainty in measurementissued by the JCGM, the error concept and the uncertainty concept are the same. Arguments in favor of the contrary were found not to be compelling. Neither was any evidence presented that
errorsand
uncertaintiesdefine a different relation between the measured and true values, nor is a Bayesian concept beyond the mere subjective probability referred to.
Michael T. Kiefer, Warren E. Heilman, Shiyuan Zhong, Joseph J. Charney, Xindi Bian, Nicholas S. Skowronski, Kenneth L. Clark, Michael R. Gallagher, John L. Hom, and Matthew Patterson
Geosci. Model Dev., 15, 1713–1734, https://doi.org/10.5194/gmd-15-1713-2022, https://doi.org/10.5194/gmd-15-1713-2022, 2022
Short summary
Short summary
We examine methods used to represent wildland fire sensible heat release in atmospheric models. A set of simulations are evaluated using observations from a low-intensity prescribed fire in the New Jersey Pine Barrens. The comparison is motivated by the need for guidance regarding the representation of low-intensity fire sensible heating in atmospheric models. Such fires are prevalent during prescribed fire operations and can impact the health and safety of fire personnel and the public.
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022, https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
Short summary
SF6-derived trends of stratospheric AoA from observations and model simulations disagree in sign. SF6 experiences chemical degradation, which we explicitly integrate in a global climate model. In our simulations, the AoA trend changes sign when SF6 sinks are considered; thus, the process has the potential to reconcile simulated with observed AoA trends. We show that the positive AoA trend is due to the SF6 sinks themselves and provide a first approach for a correction to account for SF6 loss.
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021, https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary
Short summary
The level-2 v8 database from the measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), aboard the European Space Agency Envisat satellite, containing atmospheric fields of pressure, temperature, and volume mixing ratio of 21 trace gases, is described in this paper. The database covers all the measurements acquired by MIPAS (from July 2002 to April 2012). The number of species included makes it of particular importance for the studies of stratospheric chemistry.
Michael Höpfner, Oliver Kirner, Gerald Wetzel, Björn-Martin Sinnhuber, Florian Haenel, Sören Johansson, Johannes Orphal, Roland Ruhnke, Gabriele Stiller, and Thomas von Clarmann
Atmos. Chem. Phys., 21, 18433–18464, https://doi.org/10.5194/acp-21-18433-2021, https://doi.org/10.5194/acp-21-18433-2021, 2021
Short summary
Short summary
BrONO2 is an important reservoir gas for inorganic stratospheric bromine linked to the chemical cycles of stratospheric ozone depletion. Presently infrared limb sounding is the only way to measure BrONO2 in the atmosphere. We provide global distributions of BrONO2 derived from MIPAS observations 2002–2012. Comparisons with EMAC atmospheric modelling show an overall agreement and enable us to derive an independent estimate of stratospheric bromine of 21.2±1.4pptv based on the BrONO2 measurements.
Tyler Wizenberg, Kimberly Strong, Kaley Walker, Erik Lutsch, Tobias Borsdorff, and Jochen Landgraf
Atmos. Meas. Tech., 14, 7707–7728, https://doi.org/10.5194/amt-14-7707-2021, https://doi.org/10.5194/amt-14-7707-2021, 2021
Short summary
Short summary
CO is an important atmospheric gas that influences both air quality and the climate. Here, we compare CO measurements from TROPOMI with those from ACE-FTS and an Arctic ground-based FTS at Eureka, Nunavut, to further characterize the accuracy of TROPOMI measurements. CO columns from the instruments agree well but show larger differences at high latitudes. Despite this, the results fall within the TROPOMI accuracy target, indicating good data quality at high latitudes.
Daan Hubert, Klaus-Peter Heue, Jean-Christopher Lambert, Tijl Verhoelst, Marc Allaart, Steven Compernolle, Patrick D. Cullis, Angelika Dehn, Christian Félix, Bryan J. Johnson, Arno Keppens, Debra E. Kollonige, Christophe Lerot, Diego Loyola, Matakite Maata, Sukarni Mitro, Maznorizan Mohamad, Ankie Piters, Fabian Romahn, Henry B. Selkirk, Francisco R. da Silva, Ryan M. Stauffer, Anne M. Thompson, J. Pepijn Veefkind, Holger Vömel, Jacquelyn C. Witte, and Claus Zehner
Atmos. Meas. Tech., 14, 7405–7433, https://doi.org/10.5194/amt-14-7405-2021, https://doi.org/10.5194/amt-14-7405-2021, 2021
Short summary
Short summary
We assess the first 2 years of TROPOMI tropical tropospheric ozone column data. Comparisons to reference measurements by ozonesonde and satellite sensors show that TROPOMI bias (−0.1 to +2.3 DU) and precision (1.5 to 2.5 DU) meet mission requirements. Potential causes of bias and its spatio-temporal structure are discussed, as well as ways to identify sampling errors. Our analysis of known geophysical patterns demonstrates the improved performance of TROPOMI with respect to its predecessors.
Nathaniel J. Livesey, William G. Read, Lucien Froidevaux, Alyn Lambert, Michelle L. Santee, Michael J. Schwartz, Luis F. Millán, Robert F. Jarnot, Paul A. Wagner, Dale F. Hurst, Kaley A. Walker, Patrick E. Sheese, and Gerald E. Nedoluha
Atmos. Chem. Phys., 21, 15409–15430, https://doi.org/10.5194/acp-21-15409-2021, https://doi.org/10.5194/acp-21-15409-2021, 2021
Short summary
Short summary
The Microwave Limb Sounder (MLS), an instrument on NASA's Aura mission launched in 2004, measures vertical profiles of the temperature and composition of Earth's "middle atmosphere" (the region from ~12 to ~100 km altitude). We describe how, among the 16 trace gases measured by MLS, the measurements of water vapor (H2O) and nitrous oxide (N2O) have started to drift since ~2010. The paper also discusses the origins of this drift and work to ameliorate it in a new version of the MLS dataset.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Bengt Rydberg, Michael Kiefer, Maya Garcia-Comas, Alyn Lambert, and Kaley A. Walker
Atmos. Meas. Tech., 14, 5823–5857, https://doi.org/10.5194/amt-14-5823-2021, https://doi.org/10.5194/amt-14-5823-2021, 2021
Short summary
Short summary
We present improved Odin/SMR mesospheric H2O concentration and temperature data sets, reprocessed assuming a bigger sideband leakage of the instrument. The validation study shows how the improved SMR data sets agree better with other instruments' observations than the old SMR version did. Given their unique time extension and geographical coverage, and H2O being a good tracer of mesospheric circulation, the new data sets are valuable for the study of dynamical processes and multi-year trends.
Ilya Stanevich, Dylan B. A. Jones, Kimberly Strong, Martin Keller, Daven K. Henze, Robert J. Parker, Hartmut Boesch, Debra Wunch, Justus Notholt, Christof Petri, Thorsten Warneke, Ralf Sussmann, Matthias Schneider, Frank Hase, Rigel Kivi, Nicholas M. Deutscher, Voltaire A. Velazco, Kaley A. Walker, and Feng Deng
Atmos. Chem. Phys., 21, 9545–9572, https://doi.org/10.5194/acp-21-9545-2021, https://doi.org/10.5194/acp-21-9545-2021, 2021
Short summary
Short summary
We explore the utility of a weak-constraint (WC) four-dimensional variational (4D-Var) data assimilation scheme for mitigating systematic errors in methane simulation in the GEOS-Chem model. We use data from the Greenhouse Gases Observing Satellite (GOSAT) and show that, compared to the traditional 4D-Var approach, the WC scheme improves the agreement between the model and independent observations. We find that the WC corrections to the model provide insight into the source of the errors.
Thomas von Clarmann, Udo Grabowski, Gabriele P. Stiller, Beatriz M. Monge-Sanz, Norbert Glatthor, and Sylvia Kellmann
Atmos. Chem. Phys., 21, 8823–8843, https://doi.org/10.5194/acp-21-8823-2021, https://doi.org/10.5194/acp-21-8823-2021, 2021
Short summary
Short summary
Measurements of long-lived trace gases (SF6, CFC-11, CFC-12, HCFC-12, CCl4, N2O, CH4, H2O, and CO) performed with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been used to infer the stratospheric and mesospheric meridional circulation. The MIPAS data set covers the time period from July 2002 to April 2012. The method used for this purpose was the direct inversion of the two-dimensional continuity equation. Multiannual monthly mean circulation fields are presented.
Michael Kiefer, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Anne Kleinert, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, Daniel R. Marsh, and Gabriele P. Stiller
Atmos. Meas. Tech., 14, 4111–4138, https://doi.org/10.5194/amt-14-4111-2021, https://doi.org/10.5194/amt-14-4111-2021, 2021
Short summary
Short summary
An improved dataset of vertical temperature profiles of the Earth's atmosphere in the altitude range 5–70 km is presented. These profiles are derived from measurements of the MIPAS instrument onboard ESA's Envisat satellite. The overall improvements are based on upgrades in the input data and several improvements in the data processing approach. Both of these are discussed, and an extensive error discussion is included. Enhancements of the new dataset are demonstrated by means of examples.
Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Jens-Uwe Grooß, Thomas Gulde, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Erik Kretschmer, Guido Maucher, Hans Nordmeyer, Hermann Oelhaf, Johannes Orphal, Christof Piesch, Björn-Martin Sinnhuber, Jörn Ungermann, and Bärbel Vogel
Atmos. Chem. Phys., 21, 8213–8232, https://doi.org/10.5194/acp-21-8213-2021, https://doi.org/10.5194/acp-21-8213-2021, 2021
Short summary
Short summary
Measurements of the pollutants C2H6, C2H2, HCOOH, and PAN were performed in the North Atlantic UTLS region with the airborne limb imager GLORIA in 2017. Enhanced amounts of these species were detected in the upper troposphere and even in the lowermost stratosphere (PAN). Main sources of these gases are forest fires in North America and anthropogenic pollution in South Asia. Simulations of EMAC and CAMS are qualitatively able to reproduce the measured data but underestimate the absolute amounts.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Viktoria F. Sofieva, Monika Szeląg, Johanna Tamminen, Erkki Kyrölä, Doug Degenstein, Chris Roth, Daniel Zawada, Alexei Rozanov, Carlo Arosio, John P. Burrows, Mark Weber, Alexandra Laeng, Gabriele P. Stiller, Thomas von Clarmann, Lucien Froidevaux, Nathaniel Livesey, Michel van Roozendael, and Christian Retscher
Atmos. Chem. Phys., 21, 6707–6720, https://doi.org/10.5194/acp-21-6707-2021, https://doi.org/10.5194/acp-21-6707-2021, 2021
Short summary
Short summary
The MErged GRIdded Dataset of Ozone Profiles is a long-term (2001–2018) stratospheric ozone profile climate data record with resolved longitudinal structure that combines the data from six limb satellite instruments. The dataset can be used for various analyses, some of which are discussed in the paper. In particular, regionally and vertically resolved ozone trends are evaluated, including trends in the polar regions.
Steven Compernolle, Athina Argyrouli, Ronny Lutz, Maarten Sneep, Jean-Christopher Lambert, Ann Mari Fjæraa, Daan Hubert, Arno Keppens, Diego Loyola, Ewan O'Connor, Fabian Romahn, Piet Stammes, Tijl Verhoelst, and Ping Wang
Atmos. Meas. Tech., 14, 2451–2476, https://doi.org/10.5194/amt-14-2451-2021, https://doi.org/10.5194/amt-14-2451-2021, 2021
Short summary
Short summary
The high-resolution satellite Sentinel-5p TROPOMI observes several atmospheric gases. To account for cloud interference with the observations, S5P cloud data products (CLOUD OCRA/ROCINN_CAL, OCRA/ROCINN_CRB, and FRESCO) provide vital input: cloud fraction, cloud height, and cloud optical thickness. Here, S5P cloud parameters are validated by comparing with other satellite sensors (VIIRS, MODIS, and OMI) and with ground-based CloudNet data. The agreement depends on product type and cloud height.
Jin Ma, Linda M. J. Kooijmans, Ara Cho, Stephen A. Montzka, Norbert Glatthor, John R. Worden, Le Kuai, Elliot L. Atlas, and Maarten C. Krol
Atmos. Chem. Phys., 21, 3507–3529, https://doi.org/10.5194/acp-21-3507-2021, https://doi.org/10.5194/acp-21-3507-2021, 2021
Short summary
Short summary
Carbonyl sulfide is an important trace gas in the atmosphere and useful to estimating gross primary productivity in ecosystems, but its sources and sinks remain highly uncertain. Therefore, we applied inverse model system TM5-4DVAR to better constrain the global budget. Our finding is in line with earlier studies, pointing to missing sources in the tropics and more uptake in high latitudes. We also stress the necessity of more ground-based observations and satellite data assimilation in future.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Doug A. Degenstein, Felicia Kolonjari, David Plummer, Douglas E. Kinnison, Patrick Jöckel, and Thomas von Clarmann
Atmos. Meas. Tech., 14, 1425–1438, https://doi.org/10.5194/amt-14-1425-2021, https://doi.org/10.5194/amt-14-1425-2021, 2021
Short summary
Short summary
Output from climate chemistry models (CMAM, EMAC, and WACCM) is used to estimate the expected geophysical variability of ozone concentrations between coincident satellite instrument measurement times and geolocations. We use the Canadian ACE-FTS and OSIRIS instruments as a case study. Ensemble mean estimates are used to optimize coincidence criteria between the two instruments, allowing for the use of more coincident profiles while providing an estimate of the geophysical variation.
Emily M. Gordon, Annika Seppälä, Bernd Funke, Johanna Tamminen, and Kaley A. Walker
Atmos. Chem. Phys., 21, 2819–2836, https://doi.org/10.5194/acp-21-2819-2021, https://doi.org/10.5194/acp-21-2819-2021, 2021
Short summary
Short summary
Energetic particle precipitation (EPP) is the rain of solar energetic particles into the Earth's atmosphere. EPP is known to deplete O3 in the polar mesosphere–upper stratosphere via the formation of NOx. NOx also causes chlorine deactivation in the lower stratosphere and has, thus, been proposed to potentially result in reduced ozone depletion in the spring. We provide the first evidence to show that NOx formed by EPP is able to remove active chlorine, resulting in enhanced total ozone column.
Thomas von Clarmann and Udo Grabowski
Atmos. Chem. Phys., 21, 2509–2526, https://doi.org/10.5194/acp-21-2509-2021, https://doi.org/10.5194/acp-21-2509-2021, 2021
Short summary
Short summary
The direct inversion of the 2D continuity equation allows us to infer the effective meridional transport velocity of trace gases in the middle stratosphere. This method exploits the information both given by the displacement of patterns in measured trace gas distributions and by the approximate balance between sinks and horizontal as well as vertical advection. The robustness of this method has been tested and characterized using model recovery tests and sensitivity studies.
Seidai Nara, Tomohiro O. Sato, Takayoshi Yamada, Tamaki Fujinawa, Kota Kuribayashi, Takeshi Manabe, Lucien Froidevaux, Nathaniel J. Livesey, Kaley A. Walker, Jian Xu, Franz Schreier, Yvan J. Orsolini, Varavut Limpasuvan, Nario Kuno, and Yasuko Kasai
Atmos. Meas. Tech., 13, 6837–6852, https://doi.org/10.5194/amt-13-6837-2020, https://doi.org/10.5194/amt-13-6837-2020, 2020
Short summary
Short summary
In the atmosphere, more than 80 % of chlorine compounds are anthropogenic. Hydrogen chloride (HCl), the main stratospheric chlorine reservoir, is useful to estimate the total budget of the atmospheric chlorine compounds. We report, for the first time, the HCl vertical distribution from the middle troposphere to the lower thermosphere using a high-sensitivity SMILES measurement; the data quality is quantified by comparisons with other measurements and via theoretical error analysis.
Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel
Atmos. Chem. Phys., 20, 14695–14715, https://doi.org/10.5194/acp-20-14695-2020, https://doi.org/10.5194/acp-20-14695-2020, 2020
Short summary
Short summary
We present high-resolution measurements of pollutant trace gases (PAN, C2H2, and HCOOH) in the Asian monsoon UTLS from the airborne limb imager GLORIA during StratoClim 2017. Enhancements are observed up to 16 km altitude, and PAN and C2H2 even up to 18 km. Two atmospheric models, CAMS and EMAC, reproduce the pollutant's large-scale structures but not finer structures. Convection is investigated using backward trajectories of the models ATLAS and TRACZILLA with advanced detection of convection.
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020, https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary
Short summary
With global warming, water vapour increases in the atmosphere. Water vapour is an important gas because it is a natural greenhouse gas and affects the formation of clouds, rain and snow. How much water vapour increases can vary in different regions of the world. To verify if it increases as expected on a regional scale, we analysed water vapour measurements in Switzerland. We found that water vapour generally increases as expected from temperature changes, except in winter.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Peter Forkman, Bengt Rydberg, Bernd Funke, Kaley A. Walker, and Hugh C. Pumphrey
Atmos. Meas. Tech., 13, 5013–5031, https://doi.org/10.5194/amt-13-5013-2020, https://doi.org/10.5194/amt-13-5013-2020, 2020
Short summary
Short summary
We present a unique – by time extension and geographical coverage – dataset of satellite observations of carbon monoxide (CO) in the mesosphere which will allow us to study dynamical processes, since CO is a very good tracer of circulation in the mesosphere. Previously, the dataset was unusable due to instrumental artefacts that affected the measurements. We identify the cause of the artefacts, eliminate them and prove the quality of the results by comparing with other instrument measurements.
Ilya Stanevich, Dylan B. A. Jones, Kimberly Strong, Robert J. Parker, Hartmut Boesch, Debra Wunch, Justus Notholt, Christof Petri, Thorsten Warneke, Ralf Sussmann, Matthias Schneider, Frank Hase, Rigel Kivi, Nicholas M. Deutscher, Voltaire A. Velazco, Kaley A. Walker, and Feng Deng
Geosci. Model Dev., 13, 3839–3862, https://doi.org/10.5194/gmd-13-3839-2020, https://doi.org/10.5194/gmd-13-3839-2020, 2020
Short summary
Short summary
Systematic errors in atmospheric models pose a challenge for inverse modeling studies of methane (CH4) emissions. We evaluated the CH4 simulation in the GEOS-Chem model at the horizontal resolutions of 4° × 5° and 2° × 2.5°. Our analysis identified resolution-dependent biases in the model, which we attributed to discrepancies between the two model resolutions in vertical transport in the troposphere and in stratosphere–troposphere exchange.
Thomas von Clarmann, Douglas A. Degenstein, Nathaniel J. Livesey, Stefan Bender, Amy Braverman, André Butz, Steven Compernolle, Robert Damadeo, Seth Dueck, Patrick Eriksson, Bernd Funke, Margaret C. Johnson, Yasuko Kasai, Arno Keppens, Anne Kleinert, Natalya A. Kramarova, Alexandra Laeng, Bavo Langerock, Vivienne H. Payne, Alexei Rozanov, Tomohiro O. Sato, Matthias Schneider, Patrick Sheese, Viktoria Sofieva, Gabriele P. Stiller, Christian von Savigny, and Daniel Zawada
Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020, https://doi.org/10.5194/amt-13-4393-2020, 2020
Short summary
Short summary
Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. This paper summarizes related techniques and provides recommendations for unified error reporting.
Temesgen Yirdaw Berhe, Gizaw Mengistu Tsidu, Thomas Blumenstock, Frank Hase, and Gabriele P. Stiller
Atmos. Meas. Tech., 13, 4079–4096, https://doi.org/10.5194/amt-13-4079-2020, https://doi.org/10.5194/amt-13-4079-2020, 2020
Short summary
Short summary
The retrieved CH4 and N2O VMR and column amounts from Addis Ababa, tropical site, are found to exhibit very good agreement with all coincident satellite observations (MIPAS, MLS, and AIRS). Furthermore, the bias obtained from the comparison is comparable to the precision of FTIR measurement, which allows the use of data in further scientific studies as it represents a unique environment of tropical Africa, a region poorly investigated in the past.
Steven Compernolle, Tijl Verhoelst, Gaia Pinardi, José Granville, Daan Hubert, Arno Keppens, Sander Niemeijer, Bruno Rino, Alkis Bais, Steffen Beirle, Folkert Boersma, John P. Burrows, Isabelle De Smedt, Henk Eskes, Florence Goutail, François Hendrick, Alba Lorente, Andrea Pazmino, Ankie Piters, Enno Peters, Jean-Pierre Pommereau, Julia Remmers, Andreas Richter, Jos van Geffen, Michel Van Roozendael, Thomas Wagner, and Jean-Christopher Lambert
Atmos. Chem. Phys., 20, 8017–8045, https://doi.org/10.5194/acp-20-8017-2020, https://doi.org/10.5194/acp-20-8017-2020, 2020
Short summary
Short summary
Tropospheric and stratospheric NO2 columns from the OMI QA4ECV NO2 satellite product are validated by comparison with ground-based measurements at 11 sites. The OMI stratospheric column has a small negative bias, and the OMI tropospheric column has a stronger negative bias relative to the ground-based data. Discrepancies are attributed to comparison errors (e.g. difference in horizontal smoothing) and measurement errors (e.g. clouds, aerosols, vertical smoothing and a priori profile assumptions).
Monika E. Szeląg, Viktoria F. Sofieva, Doug Degenstein, Chris Roth, Sean Davis, and Lucien Froidevaux
Atmos. Chem. Phys., 20, 7035–7047, https://doi.org/10.5194/acp-20-7035-2020, https://doi.org/10.5194/acp-20-7035-2020, 2020
Short summary
Short summary
We analyze seasonal dependence of stratospheric ozone trends over 2000–2018. We demonstrate that the mid-latitude upper stratospheric ozone recovery maximizes during local winters and equinoxes. In the tropics, a very strong seasonal dependence of ozone trends is observed at all altitudes. We found hemispheric asymmetry of summertime ozone trend patterns below 35 km. The seasonal dependence of ozone trends and stratospheric temperature trends shows a clear inter-relation of the trend patterns.
Arne Babenhauserheide, Frank Hase, and Isamu Morino
Atmos. Meas. Tech., 13, 2697–2710, https://doi.org/10.5194/amt-13-2697-2020, https://doi.org/10.5194/amt-13-2697-2020, 2020
Short summary
Short summary
This paper demonstrates that the carbon dioxide emissions of Tokyo can be estimated from long-term ground-based measurements of column-averaged atmospheric carbon dioxide abundances recorded at the TCCON site Tsukuba.
Rostislav Kouznetsov, Mikhail Sofiev, Julius Vira, and Gabriele Stiller
Atmos. Chem. Phys., 20, 5837–5859, https://doi.org/10.5194/acp-20-5837-2020, https://doi.org/10.5194/acp-20-5837-2020, 2020
Short summary
Short summary
Estimates of the age of stratospheric air (AoA), its distribution, and trends, obtained by different experimental methods, differ among each other. AoA derived form MIPAS satellite observations, the richest observational dataset on sulfur hexafluoride (SF6) in the stratosphere, are a clear outlier. With multi-decade simulations of AoA and SF6 in the stratosphere, we show that the origin of the discrepancy is in a methodology of deriving AoA from observations rather than in observational data.
Zhipeng Qu, Yi Huang, Paul A. Vaillancourt, Jason N. S. Cole, Jason A. Milbrandt, Man-Kong Yau, Kaley Walker, and Jean de Grandpré
Atmos. Chem. Phys., 20, 2143–2159, https://doi.org/10.5194/acp-20-2143-2020, https://doi.org/10.5194/acp-20-2143-2020, 2020
Short summary
Short summary
This study aims to better understand the mechanism of transport of water vapour through the mid-latitude tropopause. The results affirm the strong influence of overshooting convection on lower-stratospheric water vapour and highlight the importance of both dynamics and cloud microphysics in simulating water vapour distribution in the region of the upper troposphere–lower stratosphere.
Stefan Lossow, Charlotta Högberg, Farahnaz Khosrawi, Gabriele P. Stiller, Ralf Bauer, Kaley A. Walker, Sylvia Kellmann, Andrea Linden, Michael Kiefer, Norbert Glatthor, Thomas von Clarmann, Donal P. Murtagh, Jörg Steinwagner, Thomas Röckmann, and Roland Eichinger
Atmos. Meas. Tech., 13, 287–308, https://doi.org/10.5194/amt-13-287-2020, https://doi.org/10.5194/amt-13-287-2020, 2020
Quentin Errera, Simon Chabrillat, Yves Christophe, Jonas Debosscher, Daan Hubert, William Lahoz, Michelle L. Santee, Masato Shiotani, Sergey Skachko, Thomas von Clarmann, and Kaley Walker
Atmos. Chem. Phys., 19, 13647–13679, https://doi.org/10.5194/acp-19-13647-2019, https://doi.org/10.5194/acp-19-13647-2019, 2019
Short summary
Short summary
BRAM2 is a 13-year reanalysis of the chemical composition from the upper troposphere to the lower mesosphere based on the assimilation of the Microwave Limb Sounder observations where eight species are assimilated: O3, H2O, N2O, HNO3, HCl, ClO, CH3Cl and CO. BRAM2 agrees generally well with independent observations in the middle stratosphere, the polar vortex and the upper troposphere–lower stratosphere but also shows several issues in the model and in the observations.
William T. Ball, Justin Alsing, Johannes Staehelin, Sean M. Davis, Lucien Froidevaux, and Thomas Peter
Atmos. Chem. Phys., 19, 12731–12748, https://doi.org/10.5194/acp-19-12731-2019, https://doi.org/10.5194/acp-19-12731-2019, 2019
Short summary
Short summary
We analyse long-term stratospheric ozone (60° S–60° N) trends over the 1985–2018 period. Previous work has suggested that lower stratosphere ozone declined over 1998–2016. We demonstrate that a large ozone upsurge in 2017 is likely related to QBO variability, but that lower stratospheric ozone trends likely remain lower in 2018 than in 1998. Tropical stratospheric ozone (30° S–30° N) shows highly probable decreases in both the lower stratosphere and in the integrated stratospheric ozone layer.
Maxime Prignon, Simon Chabrillat, Daniele Minganti, Simon O'Doherty, Christian Servais, Gabriele Stiller, Geoffrey C. Toon, Martin K. Vollmer, and Emmanuel Mahieu
Atmos. Chem. Phys., 19, 12309–12324, https://doi.org/10.5194/acp-19-12309-2019, https://doi.org/10.5194/acp-19-12309-2019, 2019
Short summary
Short summary
Hydrochlorofluorocarbons (HCFCs) are the first, but temporary, substitution products for the strong ozone-depleting chlorofluorocarbons (CFCs). In this work, we present and validate an improved method to retrieve the most abundant HCFC in the atmosphere, allowing its evolution to be monitored independently in the troposphere and stratosphere. These kinds of contributions are fundamental for scrutinizing the fulfilment of the Montreal Protocol on Substances that Deplete the Ozone Layer.
Katerina Garane, Maria-Elissavet Koukouli, Tijl Verhoelst, Christophe Lerot, Klaus-Peter Heue, Vitali Fioletov, Dimitrios Balis, Alkiviadis Bais, Ariane Bazureau, Angelika Dehn, Florence Goutail, Jose Granville, Debora Griffin, Daan Hubert, Arno Keppens, Jean-Christopher Lambert, Diego Loyola, Chris McLinden, Andrea Pazmino, Jean-Pierre Pommereau, Alberto Redondas, Fabian Romahn, Pieter Valks, Michel Van Roozendael, Jian Xu, Claus Zehner, Christos Zerefos, and Walter Zimmer
Atmos. Meas. Tech., 12, 5263–5287, https://doi.org/10.5194/amt-12-5263-2019, https://doi.org/10.5194/amt-12-5263-2019, 2019
Short summary
Short summary
The Sentinel-5 Precursor TROPOMI near real time (NRTI) and offline (OFFL) total ozone column (TOC) products are validated against direct-sun and twilight zenith-sky ground-based TOC measurements and other already known spaceborne sensors. The results show that the TROPOMI TOC measurements are in very good agreement with the ground-based measurements and satellite sensor measurements and that they are well within the product requirements.
Thomas von Clarmann and Norbert Glatthor
Atmos. Meas. Tech., 12, 5155–5160, https://doi.org/10.5194/amt-12-5155-2019, https://doi.org/10.5194/amt-12-5155-2019, 2019
Short summary
Short summary
To avoid unnecessary data traffic it is sometimes desirable to apply mean averaging kernels to mean profiles of atmospheric state variables. Unfortunately, the application of individual averaging kernels to individual profiles and subsequent averaging will, in general, lead to different results than averaging of the original profiles prior to the application of the mean averaging kernels. This effect is investigated and a correction scheme is proposed.
Nils König, Peter Braesicke, and Thomas von Clarmann
Atmos. Meas. Tech., 12, 4113–4129, https://doi.org/10.5194/amt-12-4113-2019, https://doi.org/10.5194/amt-12-4113-2019, 2019
Short summary
Short summary
Inference of the tropopause from temperature profiles of finite vertical resolution entails an uncertainty of the tropopause altitude. We assess this effect by degrading the resolution of the sonde data. The tropopause altitude inferred from coarse grid profiles was found to be lower than that inferred from the original profiles for tropical and midlatitudinal radiosonde profiles. The mean displacement of the lapse rate tropopause inferred from a 3 km resolution profile is −400 m for Hilo.
Pavle Arsenovic, Alessandro Damiani, Eugene Rozanov, Bernd Funke, Andrea Stenke, and Thomas Peter
Atmos. Chem. Phys., 19, 9485–9494, https://doi.org/10.5194/acp-19-9485-2019, https://doi.org/10.5194/acp-19-9485-2019, 2019
Short summary
Short summary
Low-energy electrons (LEE) are the dominant source of odd nitrogen, which destroys ozone, in the mesosphere and stratosphere in polar winter in the geomagnetically active periods. However, the observed stratospheric ozone anomalies can be reproduced only when accounting for both low- and middle-range energy electrons (MEE) in the chemistry-climate model. Ozone changes may induce further dynamical and thermal changes in the atmosphere. We recommend including both LEE and MEE in climate models.
Dan Weaver, Kimberly Strong, Kaley A. Walker, Chris Sioris, Matthias Schneider, C. Thomas McElroy, Holger Vömel, Michael Sommer, Katja Weigel, Alexei Rozanov, John P. Burrows, William G. Read, Evan Fishbein, and Gabriele Stiller
Atmos. Meas. Tech., 12, 4039–4063, https://doi.org/10.5194/amt-12-4039-2019, https://doi.org/10.5194/amt-12-4039-2019, 2019
Short summary
Short summary
This work assesses water vapour profiles acquired by Atmospheric Chemistry Experiment (ACE) satellite instruments in the upper troposphere and lower stratosphere (UTLS) using comparisons to radiosondes and ground-based Fourier transform infrared spectrometer measurements acquired at a Canadian high Arctic measurement site in Eureka, Nunavut. Additional comparisons are made between these Eureka measurements and other water vapour satellite datasets for context, including AIRS, MLS, and others.
Ali Jalali, Shannon Hicks-Jalali, Robert J. Sica, Alexander Haefele, and Thomas von Clarmann
Atmos. Meas. Tech., 12, 3943–3961, https://doi.org/10.5194/amt-12-3943-2019, https://doi.org/10.5194/amt-12-3943-2019, 2019
Short summary
Short summary
This paper builds upon the work in von Clarmann and Grabowski (2007) concerning the a priori profile influence in the optimal estimation method applied to active remote sensing measurements, with examples given for lidar retrievals of temperature and water vapor mixing ratio. The optimal estimation method is a new technique for many active remote sensing researchers. This study gives insight into understanding the effect on retrievals of the a priori information.
Sören Johansson, Michelle L. Santee, Jens-Uwe Grooß, Michael Höpfner, Marleen Braun, Felix Friedl-Vallon, Farahnaz Khosrawi, Oliver Kirner, Erik Kretschmer, Hermann Oelhaf, Johannes Orphal, Björn-Martin Sinnhuber, Ines Tritscher, Jörn Ungermann, Kaley A. Walker, and Wolfgang Woiwode
Atmos. Chem. Phys., 19, 8311–8338, https://doi.org/10.5194/acp-19-8311-2019, https://doi.org/10.5194/acp-19-8311-2019, 2019
Short summary
Short summary
We present a study based on GLORIA aircraft and MLS/ACE-FTS/CALIOP satellite measurements during the Arctic winter 2015/16, which demonstrate (for the Arctic) unusual chlorine deactivation into HCl instead of ClONO2 due to low ozone abundances in the lowermost stratosphere, with a focus at 380 K potential temperature. The atmospheric models CLaMS and EMAC are evaluated, and measured ClONO2 is linked with transport and in situ deactivation in the lowermost stratosphere.
Mark E. Hervig, Benjamin T. Marshall, Scott M. Bailey, David E. Siskind, James M. Russell III, Charles G. Bardeen, Kaley A. Walker, and Bernd Funke
Atmos. Meas. Tech., 12, 3111–3121, https://doi.org/10.5194/amt-12-3111-2019, https://doi.org/10.5194/amt-12-3111-2019, 2019
Short summary
Short summary
The Solar Occultation for Ice Experiment (SOFIE) has measured nitric oxide (NO) from satellite since 2007. The observations are validated through error analysis and comparisons with other satellite observations. Calculated SOFIE NO uncertainties are less than 50 % for altitudes from 40 to 140 km. SOFIE agrees with other measurements to within 50 % for altitudes from roughly 50 to 105 km for spacecraft sunrise and 50 to 140 km for sunsets.
Temesgen Yirdaw Berhe, Gizaw Mengistu Tsidu, Thomas Blumenstock, Frank Hase, Thomas von Clarmann, Justus Notholt, and Emmanuel Mahieu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-209, https://doi.org/10.5194/amt-2019-209, 2019
Revised manuscript not accepted
Short summary
Short summary
This study aims to assess the latitudinal variation of MIPAS version
V5R_CH4_220 and V5R_CH4_224 uncertainty. Furthermore, we analyze the relationship between these uncertainties and the variability of water vapor. Mainly, the high uncertainty found in tropics for MIPAS CH4 220 is highly associated with variability of water vapour. However, this effect has been reduced in the new updated MIPAS CH4 224 datasets due to jointly fitted water profile with methane.
Stefan Lossow, Farahnaz Khosrawi, Michael Kiefer, Kaley A. Walker, Jean-Loup Bertaux, Laurent Blanot, James M. Russell, Ellis E. Remsberg, John C. Gille, Takafumi Sugita, Christopher E. Sioris, Bianca M. Dinelli, Enzo Papandrea, Piera Raspollini, Maya García-Comas, Gabriele P. Stiller, Thomas von Clarmann, Anu Dudhia, William G. Read, Gerald E. Nedoluha, Robert P. Damadeo, Joseph M. Zawodny, Katja Weigel, Alexei Rozanov, Faiza Azam, Klaus Bramstedt, Stefan Noël, John P. Burrows, Hideo Sagawa, Yasuko Kasai, Joachim Urban, Patrick Eriksson, Donal P. Murtagh, Mark E. Hervig, Charlotta Högberg, Dale F. Hurst, and Karen H. Rosenlof
Atmos. Meas. Tech., 12, 2693–2732, https://doi.org/10.5194/amt-12-2693-2019, https://doi.org/10.5194/amt-12-2693-2019, 2019
Bärbel Vogel, Rolf Müller, Gebhard Günther, Reinhold Spang, Sreeharsha Hanumanthu, Dan Li, Martin Riese, and Gabriele P. Stiller
Atmos. Chem. Phys., 19, 6007–6034, https://doi.org/10.5194/acp-19-6007-2019, https://doi.org/10.5194/acp-19-6007-2019, 2019
Short summary
Short summary
We identified the transport pathways of air masses from the region of the Asian monsoon (e.g. pollution and greenhouse gases caused by increasing population and growing industries in Asia) into the lower stratosphere. Even small changes of the chemical composition of the lower stratosphere have an impact on surface climate (e.g. surface temperatures). Therefore, it is important to identify transport pathways to the stratosphere to allow potential environmental risks to be assessed.
Corinna Kloss, Marc von Hobe, Michael Höpfner, Kaley A. Walker, Martin Riese, Jörn Ungermann, Birgit Hassler, Stefanie Kremser, and Greg E. Bodeker
Atmos. Meas. Tech., 12, 2129–2138, https://doi.org/10.5194/amt-12-2129-2019, https://doi.org/10.5194/amt-12-2129-2019, 2019
Short summary
Short summary
Are regional and seasonal averages from only a few satellite measurements, all aligned along a specific path, representative? Probably not. We present a method to adjust for the so-called
sampling biasand investigate its influence on derived long-term trends. The method is illustrated and validated for a long-lived trace gas (carbonyl sulfide), and it is shown that the influence of the sampling bias is too small to change scientific conclusions on long-term trends.
Leonie Bernet, Thomas von Clarmann, Sophie Godin-Beekmann, Gérard Ancellet, Eliane Maillard Barras, René Stübi, Wolfgang Steinbrecht, Niklaus Kämpfer, and Klemens Hocke
Atmos. Chem. Phys., 19, 4289–4309, https://doi.org/10.5194/acp-19-4289-2019, https://doi.org/10.5194/acp-19-4289-2019, 2019
Short summary
Short summary
After severe ozone depletion, upper stratospheric ozone has started to recover in recent years. However, stratospheric ozone trends from various data sets still show differences. To partly explain such differences, we investigate how the trends are affected by different factors, for example, anomalies in the data. We show how trend estimates can be improved by considering such anomalies and present updated stratospheric ozone trends from ground data measured in central Europe.
Jerry R. Ziemke, Luke D. Oman, Sarah A. Strode, Anne R. Douglass, Mark A. Olsen, Richard D. McPeters, Pawan K. Bhartia, Lucien Froidevaux, Gordon J. Labow, Jacquie C. Witte, Anne M. Thompson, David P. Haffner, Natalya A. Kramarova, Stacey M. Frith, Liang-Kang Huang, Glen R. Jaross, Colin J. Seftor, Mathew T. Deland, and Steven L. Taylor
Atmos. Chem. Phys., 19, 3257–3269, https://doi.org/10.5194/acp-19-3257-2019, https://doi.org/10.5194/acp-19-3257-2019, 2019
Short summary
Short summary
Both a 38-year merged satellite record of tropospheric ozone from TOMS/OMI/MLS/OMPS and a MERRA-2 GMI model simulation show large increases of 6–7 Dobson units from the Near East to India–East Asia and eastward over the Pacific. These increases in tropospheric ozone are attributed to increases in pollution over the region over the last several decades. Secondary 38-year increases of 4–5 Dobson units with both GMI model and satellite measurements occur over central African–tropical Atlantic.
Charlotta Högberg, Stefan Lossow, Farahnaz Khosrawi, Ralf Bauer, Kaley A. Walker, Patrick Eriksson, Donal P. Murtagh, Gabriele P. Stiller, Jörg Steinwagner, and Qiong Zhang
Atmos. Chem. Phys., 19, 2497–2526, https://doi.org/10.5194/acp-19-2497-2019, https://doi.org/10.5194/acp-19-2497-2019, 2019
Short summary
Short summary
Five δD (H2O) data sets obtained from satellite observations have been evaluated using profile-to-profile and climatological comparisons. The focus is on stratospheric altitudes, but results from the upper troposphere to the lower mesosphere are also provided. There are clear quantitative differences in the δD ratio in key areas of scientific interest, resulting in difficulties drawing robust conclusions on atmospheric processes affecting the water vapour budget and distribution.
Debora Griffin, Kaley A. Walker, Ingo Wohltmann, Sandip S. Dhomse, Markus Rex, Martyn P. Chipperfield, Wuhu Feng, Gloria L. Manney, Jane Liu, and David Tarasick
Atmos. Chem. Phys., 19, 577–601, https://doi.org/10.5194/acp-19-577-2019, https://doi.org/10.5194/acp-19-577-2019, 2019
Short summary
Short summary
Ozone in the stratosphere is important to protect the Earth from UV radiation. Using measurements taken by the Atmospheric Chemistry Experiment satellite between 2005 and 2013, we examine different methods to calculate the ozone loss in the high Arctic and establish the altitude at which most of the ozone is destroyed. Our results show that the different methods agree within the uncertainties. Recommendations are made on which methods are most appropriate to use.
Mohamadou Diallo, Paul Konopka, Michelle L. Santee, Rolf Müller, Mengchu Tao, Kaley A. Walker, Bernard Legras, Martin Riese, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 19, 425–446, https://doi.org/10.5194/acp-19-425-2019, https://doi.org/10.5194/acp-19-425-2019, 2019
Short summary
Short summary
This paper assesses the structural changes in the shallow and transition branches of the BDC induced by El Nino using the Lagrangian model simulations driven by ERAi and JRA-55 combined with MLS observations. We found a clear evidence of a weakening of the transition branch due to an upward shift in the dissipation height of the planetary and gravity waves and a strengthening of the shallow branch due to enhanced GW breaking in the tropics–subtropics and PW breaking at high latitudes.
Thomas von Clarmann and Sören Johansson
Atmos. Chem. Phys., 18, 15363–15386, https://doi.org/10.5194/acp-18-15363-2018, https://doi.org/10.5194/acp-18-15363-2018, 2018
Short summary
Short summary
This review article compiles the characteristics of the gas chlorine nitrate and discusses its role in atmospheric chemistry. Chlorine nitrate is a reservoir of both stratospheric chlorine and nitrogen. Formation and sink processes are discussed, as well as spectral features and spectroscopic studies. Remote sensing, fluorescence, and mass spectroscopic measurement techniques are introduced, and global distributions and the annual cycle are discussed in the context of chlorine de-/activation.
Michael Höpfner, Terry Deshler, Michael Pitts, Lamont Poole, Reinhold Spang, Gabriele Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 11, 5901–5923, https://doi.org/10.5194/amt-11-5901-2018, https://doi.org/10.5194/amt-11-5901-2018, 2018
Short summary
Short summary
Polar stratospheric clouds (PSC) have major relevance to the processes leading to polar ozone depletion. A good understanding of these particles is a prerequisite to predict their role in a changing climate. We present the first global set of PSC volume density profiles derived from the MIPAS satellite measurements covering the entire mission period between 2002 and 2012. A comparison to CALIOP lidar measurements is provided. The dataset can serve as a basis for evaluation of atmospheric models.
Norbert Glatthor, Thomas von Clarmann, Gabriele P. Stiller, Michael Kiefer, Alexandra Laeng, Bianca M. Dinelli, Gerald Wetzel, and Johannes Orphal
Atmos. Meas. Tech., 11, 4707–4723, https://doi.org/10.5194/amt-11-4707-2018, https://doi.org/10.5194/amt-11-4707-2018, 2018
Short summary
Short summary
We report differences in ozone retrievals in channels A and AB of the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which amount to up to 8 %. We provide strong evidence that the bias is caused by inconsistencies in different spectroscopic databases (MIPAS, HITRAN, GEISA). We show that a major part of the differences can be attributed to inconsistent air-broadening coefficients of the ozone lines contained in the databases.
Farahnaz Khosrawi, Stefan Lossow, Gabriele P. Stiller, Karen H. Rosenlof, Joachim Urban, John P. Burrows, Robert P. Damadeo, Patrick Eriksson, Maya García-Comas, John C. Gille, Yasuko Kasai, Michael Kiefer, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Alexei Rozanov, Christopher E. Sioris, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 11, 4435–4463, https://doi.org/10.5194/amt-11-4435-2018, https://doi.org/10.5194/amt-11-4435-2018, 2018
Short summary
Short summary
Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 satellite instruments were compared in the framework of the second SPARC water vapour assessment. We find that most data sets can be considered in observational and modelling studies addressing, e.g. stratospheric and lower mesospheric water vapour variability and trends if data-set-specific characteristics (e.g. a drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.
Arno Keppens, Jean-Christopher Lambert, José Granville, Daan Hubert, Tijl Verhoelst, Steven Compernolle, Barry Latter, Brian Kerridge, Richard Siddans, Anne Boynard, Juliette Hadji-Lazaro, Cathy Clerbaux, Catherine Wespes, Daniel R. Hurtmans, Pierre-François Coheur, Jacob C. A. van Peet, Ronald J van der A, Katerina Garane, Maria Elissavet Koukouli, Dimitris S. Balis, Andy Delcloo, Rigel Kivi, Réné Stübi, Sophie Godin-Beekmann, Michel Van Roozendael, and Claus Zehner
Atmos. Meas. Tech., 11, 3769–3800, https://doi.org/10.5194/amt-11-3769-2018, https://doi.org/10.5194/amt-11-3769-2018, 2018
Short summary
Short summary
This work, performed at the Royal Belgian Institute for Space Aeronomy and the second in a series of four Ozone_cci papers, reports for the first time on data content studies, information content studies, and comparisons with co-located ground-based reference observations for all 13 nadir ozone profile data products that are part of the Climate Research Data Package (CRDP) on atmospheric ozone of the European Space Agency's Climate Change Initiative.
Farahnaz Khosrawi, Oliver Kirner, Gabriele Stiller, Michael Höpfner, Michelle L. Santee, Sylvia Kellmann, and Peter Braesicke
Atmos. Chem. Phys., 18, 8873–8892, https://doi.org/10.5194/acp-18-8873-2018, https://doi.org/10.5194/acp-18-8873-2018, 2018
Short summary
Short summary
An extensive assessment of the performance of the chemistry–climate model EMAC is given for Arctic winters 2009/2010 and 2010/2011. The EMAC simulations are compared to satellite observations. The comparisons between EMAC simulations and satellite observations show that model and measurements compare well for these two Arctic winters. However, differences between model and observations are found that need improvements in the model in the future.
Richard J. Pope, Martyn P. Chipperfield, Stephen R. Arnold, Norbert Glatthor, Wuhu Feng, Sandip S. Dhomse, Brian J. Kerridge, Barry G. Latter, and Richard Siddans
Atmos. Chem. Phys., 18, 8389–8408, https://doi.org/10.5194/acp-18-8389-2018, https://doi.org/10.5194/acp-18-8389-2018, 2018
Stefan Lossow, Dale F. Hurst, Karen H. Rosenlof, Gabriele P. Stiller, Thomas von Clarmann, Sabine Brinkop, Martin Dameris, Patrick Jöckel, Doug E. Kinnison, Johannes Plieninger, David A. Plummer, Felix Ploeger, William G. Read, Ellis E. Remsberg, James M. Russell, and Mengchu Tao
Atmos. Chem. Phys., 18, 8331–8351, https://doi.org/10.5194/acp-18-8331-2018, https://doi.org/10.5194/acp-18-8331-2018, 2018
Short summary
Short summary
Trend estimates of lower stratospheric H2O derived from the FPH observations at Boulder and a merged zonal mean satellite data set clearly differ for the time period from the late 1980s to 2010. We investigate if a sampling bias between Boulder and the zonal mean around the Boulder latitude can explain these trend discrepancies. Typically they are small and not sufficient to explain the trend discrepancies in the observational database.
Thomas von Clarmann
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2018-8, https://doi.org/10.5194/gc-2018-8, 2018
Preprint withdrawn
Short summary
Short summary
The measurement of knowledge transfer is considered an important component of the overall performance assessment of research groups. It is, however, not a trivial task, because there is agreement on neither the definition nor on the logical structure of knowledge. In this paper related problems are summarized and approaches to the measurement of knowledge transfer are critically discussed.
Felicia Kolonjari, David A. Plummer, Kaley A. Walker, Chris D. Boone, James W. Elkins, Michaela I. Hegglin, Gloria L. Manney, Fred L. Moore, Diane Pendlebury, Eric A. Ray, Karen H. Rosenlof, and Gabriele P. Stiller
Atmos. Chem. Phys., 18, 6801–6828, https://doi.org/10.5194/acp-18-6801-2018, https://doi.org/10.5194/acp-18-6801-2018, 2018
Short summary
Short summary
We used satellite observations and model simulations of CFC-11, CFC-12, and N2O to investigate stratospheric transport, which is important for predicting the recovery of the ozone layer and future climate. We found that sampling can impact results and that the model consistently overestimates concentrations of these gases in the lower stratosphere, consistent with a too rapid Brewer–Dobson circulation. An issue with mixing in the tropical lower stratosphere in June–July–August was also found.
Natalya A. Kramarova, Pawan K. Bhartia, Glen Jaross, Leslie Moy, Philippe Xu, Zhong Chen, Matthew DeLand, Lucien Froidevaux, Nathaniel Livesey, Douglas Degenstein, Adam Bourassa, Kaley A. Walker, and Patrick Sheese
Atmos. Meas. Tech., 11, 2837–2861, https://doi.org/10.5194/amt-11-2837-2018, https://doi.org/10.5194/amt-11-2837-2018, 2018
Short summary
Short summary
The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) is a newly designed research sensor aiming to continue high vertical resolution ozone records from space-borne sensors. In summer 2017 all LP measurements were processed with the new version 2.5 algorithm. In this paper we provide a description of the key changes implemented in the new algorithm and evaluate the quality of ozone retrievals by comparing with independent satellite profile measurements (MLS, ACE-FTS and OSIRIS).
Christos Zerefos, John Kapsomenakis, Kostas Eleftheratos, Kleareti Tourpali, Irina Petropavlovskikh, Daan Hubert, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Stacey Frith, Viktoria Sofieva, and Birgit Hassler
Atmos. Chem. Phys., 18, 6427–6440, https://doi.org/10.5194/acp-18-6427-2018, https://doi.org/10.5194/acp-18-6427-2018, 2018
Short summary
Short summary
We point out the representativeness of single lidar stations for zonally averaged ozone profile variations in the middle/upper stratosphere. We examine the contribution of chemistry and natural proxies to ozone profile trends. Above 10 hPa an “inflection point” between 1997–99 marks the end of significant negative ozone trends, followed by a recent period of positive ozone change in 1998–2015. Below 15 hPa the pre-1998 negative ozone trends tend to become insignificant as we move to 2015.
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Angela Gardini, Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Alexandra Laeng, Martin Kaufmann, Viktoria F. Sofieva, Lucien Froidevaux, Kaley A. Walker, and Masato Shiotani
Atmos. Meas. Tech., 11, 2187–2212, https://doi.org/10.5194/amt-11-2187-2018, https://doi.org/10.5194/amt-11-2187-2018, 2018
Short summary
Short summary
This paper describes the inversion of O3 data from MIPAS middle atmosphere spectra which requires non-LTE. The O3 dataset comprises from 20 to 100 km, has a pole-to-pole latitude coverage, day and nighttime, and span from 2005 until 2012. A validation of the data against other satellite measurements and an overall description of O3 is also presented. This is an important dataset for the community and describes the major characteristics of stratospheric and mesospheric O3.
Carlo Arosio, Alexei Rozanov, Elizaveta Malinina, Kai-Uwe Eichmann, Thomas von Clarmann, and John P. Burrows
Atmos. Meas. Tech., 11, 2135–2149, https://doi.org/10.5194/amt-11-2135-2018, https://doi.org/10.5194/amt-11-2135-2018, 2018
Short summary
Short summary
This paper describes the development of a retrieval algorithm at the University of Bremen which derives stratospheric ozone profiles from limb observations performed by the OMPS satellite instrument. Here we present the implementation of the algorithm and the validation of our results (1 year of data against independent satellite and ground-based measurements). Good agreement is generally found between 20 and 55 km, mostly within 10 % at all latitudes.
Luis F. Millán, Nathaniel J. Livesey, Michelle L. Santee, and Thomas von Clarmann
Atmos. Chem. Phys., 18, 4187–4199, https://doi.org/10.5194/acp-18-4187-2018, https://doi.org/10.5194/acp-18-4187-2018, 2018
Short summary
Short summary
This study investigates orbital sampling biases and evaluates the additional impact caused by data quality screening for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Aura Microwave Limb Sounder (MLS).
Katerina Garane, Christophe Lerot, Melanie Coldewey-Egbers, Tijl Verhoelst, Maria Elissavet Koukouli, Irene Zyrichidou, Dimitris S. Balis, Thomas Danckaert, Florence Goutail, Jose Granville, Daan Hubert, Arno Keppens, Jean-Christopher Lambert, Diego Loyola, Jean-Pierre Pommereau, Michel Van Roozendael, and Claus Zehner
Atmos. Meas. Tech., 11, 1385–1402, https://doi.org/10.5194/amt-11-1385-2018, https://doi.org/10.5194/amt-11-1385-2018, 2018
Short summary
Short summary
The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2017, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. The exceptional quality of the level-3 GTO-ECV v3 TOC record temporal stability satisfies well the requirements for the total ozone measurement decadal stability of between 1 and 3 %.
William T. Ball, Justin Alsing, Daniel J. Mortlock, Johannes Staehelin, Joanna D. Haigh, Thomas Peter, Fiona Tummon, Rene Stübi, Andrea Stenke, John Anderson, Adam Bourassa, Sean M. Davis, Doug Degenstein, Stacey Frith, Lucien Froidevaux, Chris Roth, Viktoria Sofieva, Ray Wang, Jeannette Wild, Pengfei Yu, Jerald R. Ziemke, and Eugene V. Rozanov
Atmos. Chem. Phys., 18, 1379–1394, https://doi.org/10.5194/acp-18-1379-2018, https://doi.org/10.5194/acp-18-1379-2018, 2018
Short summary
Short summary
Using a robust analysis, with artefact-corrected ozone data, we confirm upper stratospheric ozone is recovering following the Montreal Protocol, but that lower stratospheric ozone (50° S–50° N) has continued to decrease since 1998, and the ozone layer as a whole (60° S–60° N) may be lower today than in 1998. No change in total column ozone may be due to increasing tropospheric ozone. State-of-the-art models do not reproduce lower stratospheric ozone decreases.
Minqiang Zhou, Bavo Langerock, Corinne Vigouroux, Pucai Wang, Christian Hermans, Gabriele Stiller, Kaley A. Walker, Geoff Dutton, Emmanuel Mahieu, and Martine De Mazière
Atmos. Meas. Tech., 11, 651–662, https://doi.org/10.5194/amt-11-651-2018, https://doi.org/10.5194/amt-11-651-2018, 2018
Short summary
Short summary
SF6 total columns are successfully retrieved from FTIR measurements (Saint Denis and Maïdo) at Reunion Island (21° S, 55° E) between 2004 and 2016 using the SFIT4 algorithm: the retrieval strategy and the error budget are discussed. The trend of SF6 is analysed based on the FTIR retrievals at Reunion Island, the in situ measurements at America Samoa (SMO) and the collocated satellite measurements (MIPAS and ACE-FTS) in the southern tropics. The results show good agreement.
Annika Günther, Michael Höpfner, Björn-Martin Sinnhuber, Sabine Griessbach, Terry Deshler, Thomas von Clarmann, and Gabriele Stiller
Atmos. Chem. Phys., 18, 1217–1239, https://doi.org/10.5194/acp-18-1217-2018, https://doi.org/10.5194/acp-18-1217-2018, 2018
Short summary
Short summary
Satellite-borne data of sulfur dioxide and a new data set of sulfate aerosol volume densities, as retrieved from MIPAS measurements, are studied in the upper-troposphere–lower-stratosphere region. General patterns of enhanced aerosol are in agreement with SO2. Via chemical transport model simulations for two volcanic eruptions in the Northern Hemisphere midlatitudes, we show that the volcanic enhancements in MIPAS SO2 and sulfate aerosol are consistent in terms of mass and transport patterns.
Miriam Sinnhuber, Uwe Berger, Bernd Funke, Holger Nieder, Thomas Reddmann, Gabriele Stiller, Stefan Versick, Thomas von Clarmann, and Jan Maik Wissing
Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018, https://doi.org/10.5194/acp-18-1115-2018, 2018
Short summary
Short summary
Results from global models are used to analyze the impact of energetic particle precipitation on the middle atmosphere (10–80 km). Model results agree well with observations, and show strong enhancements of NOy, long-lasting ozone loss, and a net heating in the uppermost stratosphere (~35–45 km) during polar winter which changes sign in spring. Energetic particle precipitation therefore has the potential to impact atmospheric dynamics, starting from a warmer winter-time upper stratosphere.
Hugh C. Pumphrey, Norbert Glatthor, Peter F. Bernath, Christopher D. Boone, James W. Hannigan, Ivan Ortega, Nathaniel J. Livesey, and William G. Read
Atmos. Chem. Phys., 18, 691–703, https://doi.org/10.5194/acp-18-691-2018, https://doi.org/10.5194/acp-18-691-2018, 2018
Short summary
Short summary
The Microwave Limb Sounder (MLS) is a satellite instrument that has been measuring the amount of various gases in the atmosphere since 2004. In late 2015 and 2016 it observed unusual amounts of hydrogen cyanide (HCN), a gas produced when vegetation is burned. We compare the MLS observations to similar observations from other instruments. The excess HCN is shown to come from fires in Indonesia. There are more fires than usual in 2015–16 due to a drought caused by an El Niño event.
Robert P. Damadeo, Joseph M. Zawodny, Ellis E. Remsberg, and Kaley A. Walker
Atmos. Chem. Phys., 18, 535–554, https://doi.org/10.5194/acp-18-535-2018, https://doi.org/10.5194/acp-18-535-2018, 2018
Short summary
Short summary
An ozone trend analysis that compensates for sampling biases is applied to sparsely sampled occultation data sets. International assessments have noted deficiencies in past trend analyses and this work addresses those sources of uncertainty. The nonuniform sampling patterns in data sets and drifts between data sets can affect derived recovery trends by up to 2 % decade−1. The limitations inherent to all techniques are also described and a potential path forward towards resolution is presented.
Gerald E. Nedoluha, Michael Kiefer, Stefan Lossow, R. Michael Gomez, Niklaus Kämpfer, Martin Lainer, Peter Forkman, Ole Martin Christensen, Jung Jin Oh, Paul Hartogh, John Anderson, Klaus Bramstedt, Bianca M. Dinelli, Maya Garcia-Comas, Mark Hervig, Donal Murtagh, Piera Raspollini, William G. Read, Karen Rosenlof, Gabriele P. Stiller, and Kaley A. Walker
Atmos. Chem. Phys., 17, 14543–14558, https://doi.org/10.5194/acp-17-14543-2017, https://doi.org/10.5194/acp-17-14543-2017, 2017
Short summary
Short summary
As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. In the lower mesosphere, we quantify instrumental differences in the observed trends and annual variations at six sites. We then present a range of observed trends in water vapor over the past 20 years.
Emily M. McCullough, Robert J. Sica, James R. Drummond, Graeme Nott, Christopher Perro, Colin P. Thackray, Jason Hopper, Jonathan Doyle, Thomas J. Duck, and Kaley A. Walker
Atmos. Meas. Tech., 10, 4253–4277, https://doi.org/10.5194/amt-10-4253-2017, https://doi.org/10.5194/amt-10-4253-2017, 2017
Short summary
Short summary
CRL lidar in the Canadian High Arctic uses lasers and a telescope to study polar clouds, essential for understanding the changing global climate. Hardware added to CRL allows it to measure the polarization of returned laser light, indicating whether cloud particles are liquid or frozen. Calibrations show that traditional analysis methods work well, although CRL was not originally set up to make this type of measurement. CRL can now measure cloud particle phase every 5 min, every 37.5 m, 24h/day.
Margarita Yela, Manuel Gil-Ojeda, Mónica Navarro-Comas, David Gonzalez-Bartolomé, Olga Puentedura, Bernd Funke, Javier Iglesias, Santiago Rodríguez, Omaira García, Héctor Ochoa, and Guillermo Deferrari
Atmos. Chem. Phys., 17, 13373–13389, https://doi.org/10.5194/acp-17-13373-2017, https://doi.org/10.5194/acp-17-13373-2017, 2017
Short summary
Short summary
The paper focuses on stratospheric trends of NO2, a species involved in the ozone equilibrium, using data from four NDACC stations. The global stratospheric NO2 trend has not yet been established conclusively. We analyse DOAS data from stations in the Northern Hemisphere and Southern Hemisphere during 1993–2014. The most relevant finding is the hemispheric asymmetry found in the sign of the NO2 trend, providing further evidence of changes in the stratosphere dynamics on the global scale.
Maya García-Comas, María José López-González, Francisco González-Galindo, José Luis de la Rosa, Manuel López-Puertas, Marianna G. Shepherd, and Gordon G. Shepherd
Ann. Geophys., 35, 1151–1164, https://doi.org/10.5194/angeo-35-1151-2017, https://doi.org/10.5194/angeo-35-1151-2017, 2017
Short summary
Short summary
Information on the mesospheric OH layer height is crucial for identifying sources of its variability and causes of discrepancies in measurements and models. Using space-based data, we inferred an empirical function for predicting the altitude of the layer at midlatitudes from ground-based measurements of OH intensity and temperature. By applying it to data at the Sierra Nevada Observatory, we found significant short-term variability in the layer altitude, mainly due to wave variability.
Viktoria F. Sofieva, Erkki Kyrölä, Marko Laine, Johanna Tamminen, Doug Degenstein, Adam Bourassa, Chris Roth, Daniel Zawada, Mark Weber, Alexei Rozanov, Nabiz Rahpoe, Gabriele Stiller, Alexandra Laeng, Thomas von Clarmann, Kaley A. Walker, Patrick Sheese, Daan Hubert, Michel van Roozendael, Claus Zehner, Robert Damadeo, Joseph Zawodny, Natalya Kramarova, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 12533–12552, https://doi.org/10.5194/acp-17-12533-2017, https://doi.org/10.5194/acp-17-12533-2017, 2017
Short summary
Short summary
We present a merged dataset of ozone profiles from several satellite instruments: SAGE II, GOMOS, SCIAMACHY, MIPAS, OSIRIS, ACE-FTS and OMPS. For merging, we used the latest versions of the original ozone datasets.
The merged SAGE–CCI–OMPS dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997.
Kevin S. Olsen, Kimberly Strong, Kaley A. Walker, Chris D. Boone, Piera Raspollini, Johannes Plieninger, Whitney Bader, Stephanie Conway, Michel Grutter, James W. Hannigan, Frank Hase, Nicholas Jones, Martine de Mazière, Justus Notholt, Matthias Schneider, Dan Smale, Ralf Sussmann, and Naoko Saitoh
Atmos. Meas. Tech., 10, 3697–3718, https://doi.org/10.5194/amt-10-3697-2017, https://doi.org/10.5194/amt-10-3697-2017, 2017
Short summary
Short summary
The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier transform spectrometer (FTS). TANSO-FTS has a thermal infrared channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios in the troposphere. We compare the retrieved vertical profiles of CH4 from TANSO-FTS with those from two other spaceborne FTSs and with ground-based FTS observatories to assess their quality.
Stefan Lossow, Hella Garny, and Patrick Jöckel
Atmos. Chem. Phys., 17, 11521–11539, https://doi.org/10.5194/acp-17-11521-2017, https://doi.org/10.5194/acp-17-11521-2017, 2017
Gabriele P. Stiller, Federico Fierli, Felix Ploeger, Chiara Cagnazzo, Bernd Funke, Florian J. Haenel, Thomas Reddmann, Martin Riese, and Thomas von Clarmann
Atmos. Chem. Phys., 17, 11177–11192, https://doi.org/10.5194/acp-17-11177-2017, https://doi.org/10.5194/acp-17-11177-2017, 2017
Short summary
Short summary
The discrepancy between modelled and observed 25-year trends of the strength of the stratospheric Brewer–Dobson circulation (BDC) is still not resolved. With our paper we trace the observed hemispheric dipole structure of age of air trends back to natural variability in shorter-term (decadal) time frames. Beyond this we demonstrate that after correction for the decadal natural variability the remaining trend for the first decade of the 21st century is consistent with model simulations.
Wolfgang Steinbrecht, Lucien Froidevaux, Ryan Fuller, Ray Wang, John Anderson, Chris Roth, Adam Bourassa, Doug Degenstein, Robert Damadeo, Joe Zawodny, Stacey Frith, Richard McPeters, Pawan Bhartia, Jeannette Wild, Craig Long, Sean Davis, Karen Rosenlof, Viktoria Sofieva, Kaley Walker, Nabiz Rahpoe, Alexei Rozanov, Mark Weber, Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Natalya Kramarova, Sophie Godin-Beekmann, Thierry Leblanc, Richard Querel, Daan Swart, Ian Boyd, Klemens Hocke, Niklaus Kämpfer, Eliane Maillard Barras, Lorena Moreira, Gerald Nedoluha, Corinne Vigouroux, Thomas Blumenstock, Matthias Schneider, Omaira García, Nicholas Jones, Emmanuel Mahieu, Dan Smale, Michael Kotkamp, John Robinson, Irina Petropavlovskikh, Neil Harris, Birgit Hassler, Daan Hubert, and Fiona Tummon
Atmos. Chem. Phys., 17, 10675–10690, https://doi.org/10.5194/acp-17-10675-2017, https://doi.org/10.5194/acp-17-10675-2017, 2017
Short summary
Short summary
Thanks to the 1987 Montreal Protocol and its amendments, ozone-depleting chlorine (and bromine) in the stratosphere has declined slowly since the late 1990s. Improved and extended long-term ozone profile observations from satellites and ground-based stations confirm that ozone is responding as expected and has increased by about 2 % per decade since 2000 in the upper stratosphere, around 40 km altitude. At lower altitudes, however, ozone has not changed significantly since 2000.
Debora Griffin, Kaley A. Walker, Stephanie Conway, Felicia Kolonjari, Kimberly Strong, Rebecca Batchelor, Chris D. Boone, Lin Dan, James R. Drummond, Pierre F. Fogal, Dejian Fu, Rodica Lindenmaier, Gloria L. Manney, and Dan Weaver
Atmos. Meas. Tech., 10, 3273–3294, https://doi.org/10.5194/amt-10-3273-2017, https://doi.org/10.5194/amt-10-3273-2017, 2017
Short summary
Short summary
Measurements in the high Arctic from two ground-based and one space-borne infrared Fourier transform spectrometer agree well over an 8-year time period (2006–2013). These comparisons show no notable degradation, indicating the consistency of these data sets and suggesting that the space-borne measurements have been stable. Increasing ozone, as well as increases of some other atmospheric gases, has been found over this same time period.
Dan Weaver, Kimberly Strong, Matthias Schneider, Penny M. Rowe, Chris Sioris, Kaley A. Walker, Zen Mariani, Taneil Uttal, C. Thomas McElroy, Holger Vömel, Alessio Spassiani, and James R. Drummond
Atmos. Meas. Tech., 10, 2851–2880, https://doi.org/10.5194/amt-10-2851-2017, https://doi.org/10.5194/amt-10-2851-2017, 2017
Short summary
Short summary
We have compared techniques used by several PEARL instruments to measure atmospheric water vapour. No single instrument can comprehensively map the atmosphere. We documented how well these techniques perform and quantified the agreement and biases between them. This work showed that new FTIR datasets at PEARL capture accurate measurements of High Arctic water vapour.
Ellen Eckert, Thomas von Clarmann, Alexandra Laeng, Gabriele P. Stiller, Bernd Funke, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Arne Babenhauserheide, Gerald Wetzel, Christopher Boone, Andreas Engel, Jeremy J. Harrison, Patrick E. Sheese, Kaley A. Walker, and Peter F. Bernath
Atmos. Meas. Tech., 10, 2727–2743, https://doi.org/10.5194/amt-10-2727-2017, https://doi.org/10.5194/amt-10-2727-2017, 2017
Short summary
Short summary
We retrieved vertical profiles of CCl4 from MIPAS Envisat IMK/IAA data. A detailed description of all characteristics is included in the paper as well as comparisons with historical measurements and comparisons with collocated measurements of instruments covering the same time span as MIPAS Envisat. A particular focus also lies on the usage of a new CCl4 spectroscopic dataset introduced recently, which leads to more realistic CCl4 volume mixing ratios.
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary
Short summary
Climate data records (CDRs) contain data describing Earth's climate and should address uncertainty in the data to communicate what is known about climate variability or change and what range of doubt exists. This paper discusses good practice for including uncertainty information in CDRs for the essential climate variables (ECVs) derived from satellite data. Recommendations emerge from the shared experience of diverse ECV projects within the European Space Agency Climate Change Initiative.
Ingrid T. van der Laan-Luijkx, Ivar R. van der Velde, Emma van der Veen, Aki Tsuruta, Karolina Stanislawska, Arne Babenhauserheide, Hui Fang Zhang, Yu Liu, Wei He, Huilin Chen, Kenneth A. Masarie, Maarten C. Krol, and Wouter Peters
Geosci. Model Dev., 10, 2785–2800, https://doi.org/10.5194/gmd-10-2785-2017, https://doi.org/10.5194/gmd-10-2785-2017, 2017
Short summary
Short summary
The CarbonTracker Data Assimilation Shell (CTDAS) is the new modular implementation of the CarbonTracker Europe (CTE) data assimilation system. We present and document CTDAS and demonstrate its ability to estimate global carbon sources and sinks. We present the latest CTE results including the distribution of the carbon sinks over the hemispheres and between the land biosphere and the oceans. We show the versatility of CTDAS with an overview of the wide range of other applications.
Cristen Adams, Adam E. Bourassa, Chris A. McLinden, Chris E. Sioris, Thomas von Clarmann, Bernd Funke, Landon A. Rieger, and Douglas A. Degenstein
Atmos. Chem. Phys., 17, 8063–8080, https://doi.org/10.5194/acp-17-8063-2017, https://doi.org/10.5194/acp-17-8063-2017, 2017
Short summary
Short summary
We measured the relationship between volcanic aerosol and trace gases in the stratosphere using the OSIRIS and MIPAS satellite instruments between 2002 and 2014. We found that levels of stratospheric NO2 and N2O5 both decreased significantly in the presence of volcanic aerosol. These decreases were consistent with the modeling results.
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
Felix Ploeger, Paul Konopka, Kaley Walker, and Martin Riese
Atmos. Chem. Phys., 17, 7055–7066, https://doi.org/10.5194/acp-17-7055-2017, https://doi.org/10.5194/acp-17-7055-2017, 2017
Short summary
Short summary
Pollution transport from the surface to the stratosphere within the Asian summer monsoon circulation may cause harmful effects on stratospheric chemistry and climate. We investigate air mass transport from the monsoon anticyclone into the stratosphere, combining model simulations with satellite trace gas measurements. We show evidence for two transport pathways from the monsoon: (i) into the tropical stratosphere and (ii) into the Northern Hemisphere extratropical lower stratosphere.
Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Bianca Maria Dinelli, Anu Dudhia, Piera Raspollini, Norbert Glatthor, Udo Grabowski, Viktoria Sofieva, Lucien Froidevaux, Kaley A. Walker, and Claus Zehner
Atmos. Meas. Tech., 10, 1511–1518, https://doi.org/10.5194/amt-10-1511-2017, https://doi.org/10.5194/amt-10-1511-2017, 2017
Short summary
Short summary
A MIPAS instrument was flown in 2002–2012 on the Envisat satellite and measured atmospheric composition. There exist four processors retrieving atmospheric profiles from MIPAS spectra. We performed a mathematically clean merging of 2007–2008 datasets of ozone from these four processors. The merged product was compared with ozone datasets from ACE-FTS and MLS instruments. The advantages and the shortcomings of this merged product are discussed.
Stefan Lossow, Farahnaz Khosrawi, Gerald E. Nedoluha, Faiza Azam, Klaus Bramstedt, John. P. Burrows, Bianca M. Dinelli, Patrick Eriksson, Patrick J. Espy, Maya García-Comas, John C. Gille, Michael Kiefer, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Gabriele P. Stiller, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 10, 1111–1137, https://doi.org/10.5194/amt-10-1111-2017, https://doi.org/10.5194/amt-10-1111-2017, 2017
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Norbert Glatthor, Michael Höpfner, Adrian Leyser, Gabriele P. Stiller, Thomas von Clarmann, Udo Grabowski, Sylvia Kellmann, Andrea Linden, Björn-Martin Sinnhuber, Gisèle Krysztofiak, and Kaley A. Walker
Atmos. Chem. Phys., 17, 2631–2652, https://doi.org/10.5194/acp-17-2631-2017, https://doi.org/10.5194/acp-17-2631-2017, 2017
Short summary
Short summary
To date, information on the global distribution of atmospheric carbonyl sulfide (OCS) is still rather sparse.
However, detailed knowledge of the OCS distribution is of scientific interest, because this trace gas is on one of the major sources of atmospheric sulfur, which is a prerequisite of the stratospheric aerosol layer. Under this aspect we present a comprehensive space-borne data set of global OCS concentrations covering the period from June 2002 to April 2012.
Viktoria F. Sofieva, Iolanda Ialongo, Janne Hakkarainen, Erkki Kyrölä, Johanna Tamminen, Marko Laine, Daan Hubert, Alain Hauchecorne, Francis Dalaudier, Jean-Loup Bertaux, Didier Fussen, Laurent Blanot, Gilbert Barrot, and Angelika Dehn
Atmos. Meas. Tech., 10, 231–246, https://doi.org/10.5194/amt-10-231-2017, https://doi.org/10.5194/amt-10-231-2017, 2017
Short summary
Short summary
This paper presents a new ozone profile inversion algorithm for GOMOS/Envisat satellite data. This algorithm is enhanced with a DOAS-type method at visible wavelengths in the upper troposphere and the lower stratosphere. The new GOMOS ozone profiles have a significantly improved data quality in the UTLS compared to the official IPF V6 ozone profiles. The paper describes the inversion algorithm and present inter-comparisons with ozonesonde and satellite measurements.
Tamás Kovács, Wuhu Feng, Anna Totterdill, John M. C. Plane, Sandip Dhomse, Juan Carlos Gómez-Martín, Gabriele P. Stiller, Florian J. Haenel, Christopher Smith, Piers M. Forster, Rolando R. García, Daniel R. Marsh, and Martyn P. Chipperfield
Atmos. Chem. Phys., 17, 883–898, https://doi.org/10.5194/acp-17-883-2017, https://doi.org/10.5194/acp-17-883-2017, 2017
Short summary
Short summary
Sulfur hexafluoride (SF6) is a very potent greenhouse gas, which is present in the atmosphere only through its industrial use, for example as an electrical insulator. To estimate accurately the impact of SF6 emissions on climate we need to know how long it persists in the atmosphere before being removed. Previous estimates of the SF6 lifetime indicate a large degree of uncertainty. Here we use a detailed atmospheric model to calculate a current best estimate of the SF6 lifetime.
Á. Aythami Jurado-Navarro, Manuel López-Puertas, Bernd Funke, Maya García-Comas, Angela Gardini, Francisco González-Galindo, Gabriele P. Stiller, Thomas von Clarmann, Udo Grabowski, and Andrea Linden
Atmos. Meas. Tech., 9, 6081–6100, https://doi.org/10.5194/amt-9-6081-2016, https://doi.org/10.5194/amt-9-6081-2016, 2016
Short summary
Short summary
We present global distributions of CO2 concentrations in the upper atmosphere (70–140 km) derived from high-resolution 4.3 µm MIPAS spectra from 2005 to 2012. CO2 relative abundances have been measured at 120–140 km for the first time. The data have an unprecedented accuracy. CO2 shows a strong seasonal behaviour. CO2 largely controls the temperature of the upper atmosphere and its measurement is very important for understanding the impact of climate change in this region.
Bastiaan Jonkheid, Thomas Röckmann, Norbert Glatthor, Christof Janssen, Gabriele Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 9, 6069–6079, https://doi.org/10.5194/amt-9-6069-2016, https://doi.org/10.5194/amt-9-6069-2016, 2016
Bärbel Vogel, Gebhard Günther, Rolf Müller, Jens-Uwe Grooß, Armin Afchine, Heiko Bozem, Peter Hoor, Martina Krämer, Stefan Müller, Martin Riese, Christian Rolf, Nicole Spelten, Gabriele P. Stiller, Jörn Ungermann, and Andreas Zahn
Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, https://doi.org/10.5194/acp-16-15301-2016, 2016
Short summary
Short summary
The identification of transport pathways from the Asian monsoon anticyclone into the lower stratosphere is unclear. Global simulations with the CLaMS model demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere by flooding the extratropical lower stratosphere with young moist air masses. Two main horizontal transport pathways from the Asian monsoon anticyclone are identified.
Quentin Errera, Simone Ceccherini, Yves Christophe, Simon Chabrillat, Michaela I. Hegglin, Alyn Lambert, Richard Ménard, Piera Raspollini, Sergey Skachko, Michiel van Weele, and Kaley A. Walker
Atmos. Meas. Tech., 9, 5895–5909, https://doi.org/10.5194/amt-9-5895-2016, https://doi.org/10.5194/amt-9-5895-2016, 2016
Short summary
Short summary
When this study started, its goal was to provide a reanalysis of the stratospheric composition of methane and nitrous oxide, two important sources of hydrogen and nitrogen species in the stratosphere that influence the ozone abundance. However, the goal changed when several issues in the assimilated observations were discovered. Finally, this study illustrates how data assimilation methods can be used to add value to the observations as well as to diagnose their limitations.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Chris A. McLinden, Peter F. Bernath, Adam E. Bourassa, John P. Burrows, Doug A. Degenstein, Bernd Funke, Didier Fussen, Gloria L. Manney, C. Thomas McElroy, Donal Murtagh, Cora E. Randall, Piera Raspollini, Alexei Rozanov, James M. Russell III, Makoto Suzuki, Masato Shiotani, Joachim Urban, Thomas von Clarmann, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 5781–5810, https://doi.org/10.5194/amt-9-5781-2016, https://doi.org/10.5194/amt-9-5781-2016, 2016
Short summary
Short summary
This study validates version 3.5 of the ACE-FTS NOy species data sets by comparing diurnally scaled ACE-FTS data to correlative data from 11 other satellite limb sounders. For all five species examined (NO, NO2, HNO3, N2O5, and ClONO2), there is good agreement between ACE-FTS and the other data sets in various regions of the atmosphere. In these validated regions, these NOy data products can be used for further investigation into the composition, dynamics, and climate of the stratosphere.
Thomas von Clarmann and Udo Grabowski
Atmos. Chem. Phys., 16, 14563–14584, https://doi.org/10.5194/acp-16-14563-2016, https://doi.org/10.5194/acp-16-14563-2016, 2016
Short summary
Short summary
We present a method which uses global measurements of stable stratospheric trace species to infer stratospheric circulation. This method finds the circulation vectors which best satisfy the continuity equation for the given measurements. Some of the main disadvantages of more conventional methods are avoided. As a proof of concept, this method has been applied to measurements from the MIPAS instrument. Its adequacy has been proven since the inferred circulation shows the expected features.
Elisa Castelli, Marco Ridolfi, Massimo Carlotti, Björn-Martin Sinnhuber, Oliver Kirner, Michael Kiefer, and Bianca Maria Dinelli
Atmos. Meas. Tech., 9, 5499–5508, https://doi.org/10.5194/amt-9-5499-2016, https://doi.org/10.5194/amt-9-5499-2016, 2016
Short summary
Short summary
MIPAS is a satellite-borne limb emission sounder. The algorithm used to infer atmospheric composition from its measurements exploits the assumption that the atmosphere is horizontally homogeneous. This assumption can cause significant errors. We use synthetic observations to quantify these errors. Furthermore we show that the inclusion of any kind of horizontal variability model improves all the retrieval targets and that the two-dimensional approach implies the smallest errors.
Michael Höpfner, Rainer Volkamer, Udo Grabowski, Michel Grutter, Johannes Orphal, Gabriele Stiller, Thomas von Clarmann, and Gerald Wetzel
Atmos. Chem. Phys., 16, 14357–14369, https://doi.org/10.5194/acp-16-14357-2016, https://doi.org/10.5194/acp-16-14357-2016, 2016
Short summary
Short summary
Ammonia (NH3) in the atmosphere is important because of its influence on aerosol and cloud formation and its increasing anthropogenic emissions. We report the first detection of NH3 in the upper troposphere by the analysis of infrared limb emission spectra measured by the MIPAS instrument on Envisat. We have found enhanced values of NH3 within the Asian summer monsoon upper troposphere, where it might contribute to the composition of the Asian tropopause aerosol layer.
Richard J. Pope, Nigel A. D. Richards, Martyn P. Chipperfield, David P. Moore, Sarah A. Monks, Stephen R. Arnold, Norbert Glatthor, Michael Kiefer, Tom J. Breider, Jeremy J. Harrison, John J. Remedios, Carsten Warneke, James M. Roberts, Glenn S. Diskin, Lewis G. Huey, Armin Wisthaler, Eric C. Apel, Peter F. Bernath, and Wuhu Feng
Atmos. Chem. Phys., 16, 13541–13559, https://doi.org/10.5194/acp-16-13541-2016, https://doi.org/10.5194/acp-16-13541-2016, 2016
Laura E. Revell, Andrea Stenke, Eugene Rozanov, William Ball, Stefan Lossow, and Thomas Peter
Atmos. Chem. Phys., 16, 13067–13080, https://doi.org/10.5194/acp-16-13067-2016, https://doi.org/10.5194/acp-16-13067-2016, 2016
Short summary
Short summary
Water vapour in the stratosphere plays an important role in atmospheric chemistry and the Earth's radiative balance. We have analysed trends in stratospheric water vapour through the 21st century as simulated by a coupled chemistry–climate model following a range of greenhouse gas emission scenarios. We have also quantified the contribution that methane oxidation in the stratosphere makes to projected water vapour trends.
Nathan P. Gillett, Hideo Shiogama, Bernd Funke, Gabriele Hegerl, Reto Knutti, Katja Matthes, Benjamin D. Santer, Daithi Stone, and Claudia Tebaldi
Geosci. Model Dev., 9, 3685–3697, https://doi.org/10.5194/gmd-9-3685-2016, https://doi.org/10.5194/gmd-9-3685-2016, 2016
Short summary
Short summary
Detection and attribution of climate change is the process of determining the causes of observed climate changes, which has underpinned key conclusions on the role of human influence on climate in the reports of the Intergovernmental Panel on Climate Change (IPCC). This paper describes a coordinated set of climate model experiments that will form part of the Sixth Coupled Model Intercomparison Project and will support improved attribution of climate change in the next IPCC report.
Andreas Ostler, Ralf Sussmann, Prabir K. Patra, Sander Houweling, Marko De Bruine, Gabriele P. Stiller, Florian J. Haenel, Johannes Plieninger, Philippe Bousquet, Yi Yin, Marielle Saunois, Kaley A. Walker, Nicholas M. Deutscher, David W. T. Griffith, Thomas Blumenstock, Frank Hase, Thorsten Warneke, Zhiting Wang, Rigel Kivi, and John Robinson
Atmos. Meas. Tech., 9, 4843–4859, https://doi.org/10.5194/amt-9-4843-2016, https://doi.org/10.5194/amt-9-4843-2016, 2016
Short summary
Short summary
Our evaluation of column-averaged methane (XCH4) in models and TCCON reveals latitudinal biases between 0.4 % and 2.1 % originating from an inter-model spread in stratospheric CH4. Substituting model stratospheric CH4 fields by satellite data significantly reduces the large XCH4 bias observed for one model. For other models, showing only minor biases, the impact is ambiguous; i.e., the satellite uncertainty range hinders a more accurate model evaluation needed to improve inverse modeling.
Niall J. Ryan, Kaley A. Walker, Uwe Raffalski, Rigel Kivi, Jochen Gross, and Gloria L. Manney
Atmos. Meas. Tech., 9, 4503–4519, https://doi.org/10.5194/amt-9-4503-2016, https://doi.org/10.5194/amt-9-4503-2016, 2016
Short summary
Short summary
Atmospheric ozone concentrations above Kiruna, Sweden, within 16–54 km altitude, were obtained using measurements from two ground-based instruments, KIMRA and MIRA 2. The results were compared to satellite and balloon data for validation, revealing an oscillatory offset in KIMRA data between 18 and 35 km. KIMRA data from 2008 to 2013 show a local minimum in mid-stratospheric winter ozone concentrations that is likely due to dynamics related to the polar vortex.
Maya García-Comas, Francisco González-Galindo, Bernd Funke, Angela Gardini, Aythami Jurado-Navarro, Manuel López-Puertas, and William E. Ward
Atmos. Chem. Phys., 16, 11019–11041, https://doi.org/10.5194/acp-16-11019-2016, https://doi.org/10.5194/acp-16-11019-2016, 2016
Short summary
Short summary
In this paper, for the first time, temperature longitudinal oscillations are derived from 20 to 150 km from a single instrument. A climatology of amplitudes and phases of zonal waves with odd daily frequencies is presented on a global scale. The interannual variability in amplitudes of the migrating modes shows a QBO in the MLT, which is probably originated in the stratosphere. The results are useful for testing general circulation models considering tidal effects in the MLT region.
Swagata Payra, Philippe Ricaud, Rachid Abida, Laaziz El Amraoui, Jean-Luc Attié, Emmanuel Rivière, Fabien Carminati, and Thomas von Clarmann
Atmos. Meas. Tech., 9, 4355–4373, https://doi.org/10.5194/amt-9-4355-2016, https://doi.org/10.5194/amt-9-4355-2016, 2016
Short summary
Short summary
The study deals with the budget of water vapour (H2O) at the tropical tropopause. The MOCAGE-VALENTINA assimilation tool has been used to assimilate Microwave Limb Sounder H2O space-borne measurements within the 316–5 hPa range from August 2011 to March 2013. Diagnostics are developed to assess the quality of the analyses depending on several parameters. Sensitivity studies show the improvement on the analyses when assimilating measurements of better quality, mainly over the convective areas.
Lorena Moreira, Klemens Hocke, Francisco Navas-Guzmán, Ellen Eckert, Thomas von Clarmann, and Niklaus Kämpfer
Atmos. Chem. Phys., 16, 10455–10467, https://doi.org/10.5194/acp-16-10455-2016, https://doi.org/10.5194/acp-16-10455-2016, 2016
Short summary
Short summary
The GROMOS radiometer in Bern has been part of the NDACC since 1994. Our time series of stratospheric ozone profiles allow the assessment of natural oscillations, which are essential for the evaluation of detected stratospheric ozone trends. Among our new findings are the link between the upper stratospheric O3-SAO and the polar stratopause warmings in winter. We have also detected a strong peak amplitude of 5 % related to the solar activity cycle and the ENSO effect in ozone at midlatitudes.
E. Eckert, A. Laeng, S. Lossow, S. Kellmann, G. Stiller, T. von Clarmann, N. Glatthor, M. Höpfner, M. Kiefer, H. Oelhaf, J. Orphal, B. Funke, U. Grabowski, F. Haenel, A. Linden, G. Wetzel, W. Woiwode, P. F. Bernath, C. Boone, G. S. Dutton, J. W. Elkins, A. Engel, J. C. Gille, F. Kolonjari, T. Sugita, G. C. Toon, and K. A. Walker
Atmos. Meas. Tech., 9, 3355–3389, https://doi.org/10.5194/amt-9-3355-2016, https://doi.org/10.5194/amt-9-3355-2016, 2016
Short summary
Short summary
We investigate the accuracy, precision and long-term stability of the MIPAS Envisat IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) products.
For comparisons we use several data products from satellite, airplane and balloon-borne instruments as well as ground-based data.
MIPAS Envisat CFC-11 has a slight high bias at the lower end of the profile.
CFC-12 agrees well with other data products.
The temporal stability is good up to ~ 30 km, but still leaves room for improvement.
Markus Kunze, Peter Braesicke, Ulrike Langematz, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8695–8714, https://doi.org/10.5194/acp-16-8695-2016, https://doi.org/10.5194/acp-16-8695-2016, 2016
Bernd Funke, Manuel López-Puertas, Gabriele P. Stiller, Stefan Versick, and Thomas von Clarmann
Atmos. Chem. Phys., 16, 8667–8693, https://doi.org/10.5194/acp-16-8667-2016, https://doi.org/10.5194/acp-16-8667-2016, 2016
Short summary
Short summary
We present a semi-empirical model for the reconstruction of polar winter descent of reactive nitrogen (NOy) produced by energetic particle precipitation (EPP) into the stratosphere. It can be used to prescribe NOy in chemistry climate models with an upper lid below the EPP source region. We also found a significant reduction of the EPP-generated NOy during the last 30 years, likely affecting the long-term NOy trend by counteracting the expected increase caused by growing N2O emission.
Michael T. Kiefer, Warren E. Heilman, Shiyuan Zhong, Joseph J. Charney, and Xindi Bian
Atmos. Chem. Phys., 16, 8499–8509, https://doi.org/10.5194/acp-16-8499-2016, https://doi.org/10.5194/acp-16-8499-2016, 2016
Short summary
Short summary
Studies of fire–atmosphere interactions in horizontally heterogeneous forests are limited in number. This study considers the sensitivity of fire-perturbed variables (e.g., vertical velocity, turbulent kinetic energy) to gaps in forest cover using ARPS-CANOPY, an atmospheric numerical model with a canopy sub-model. Results show that the atmosphere is most sensitive to the fire when the gap is centered on the fire and least sensitive when the gap is upstream of the fire.
Sabine Brinkop, Martin Dameris, Patrick Jöckel, Hella Garny, Stefan Lossow, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8125–8140, https://doi.org/10.5194/acp-16-8125-2016, https://doi.org/10.5194/acp-16-8125-2016, 2016
Short summary
Short summary
This study investigates the water vapour decline in the stratosphere beginning in the year 2000 and other similarly strong stratospheric water vapour reductions. The driving forces are tropical sea surface temperature (SST) changes due to coincidence with a preceding ENSO event and supported by the west to east change of the QBO.
There are indications that both SSTs and the specific dynamical state of the atmosphere contribute to the long period of low water vapour values from 2001 to 2006.
Daan Hubert, Jean-Christopher Lambert, Tijl Verhoelst, José Granville, Arno Keppens, Jean-Luc Baray, Adam E. Bourassa, Ugo Cortesi, Doug A. Degenstein, Lucien Froidevaux, Sophie Godin-Beekmann, Karl W. Hoppel, Bryan J. Johnson, Erkki Kyrölä, Thierry Leblanc, Günter Lichtenberg, Marion Marchand, C. Thomas McElroy, Donal Murtagh, Hideaki Nakane, Thierry Portafaix, Richard Querel, James M. Russell III, Jacobo Salvador, Herman G. J. Smit, Kerstin Stebel, Wolfgang Steinbrecht, Kevin B. Strawbridge, René Stübi, Daan P. J. Swart, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Joachim Urban, Joanna A. E. van Gijsel, Roeland Van Malderen, Peter von der Gathen, Kaley A. Walker, Elian Wolfram, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 2497–2534, https://doi.org/10.5194/amt-9-2497-2016, https://doi.org/10.5194/amt-9-2497-2016, 2016
Short summary
Short summary
A more detailed understanding of satellite O3 profile data records is vital for further progress in O3 research. To this end, we made a comprehensive assessment of 14 limb/occultation profilers using ground-based reference data. The mutual consistency of satellite O3 in terms of bias, short-term variability and decadal stability is generally good over most of the stratosphere. However, we identified some exceptions that impact the quality of recently merged data sets and ozone trend assessments.
Maya García-Comas, Manuel López-Puertas, Bernd Funke, Á. Aythami Jurado-Navarro, Angela Gardini, Gabriele P. Stiller, Thomas von Clarmann, and Michael Höpfner
Atmos. Chem. Phys., 16, 6701–6719, https://doi.org/10.5194/acp-16-6701-2016, https://doi.org/10.5194/acp-16-6701-2016, 2016
Short summary
Short summary
We have analysed IR measurements of PMCs in the NH and SH from 2005 to 2012. This technique is sensitive to the total ice volume independent of particle size. For the first time, we have measured the total ice volume from the midlatitudes to the poles. The data indicate a layer of ice from 81 to 89 km and from the poles to 50–60º in each hemisphere, increasing near the poles. The ice density is larger in the NH than in the SH and located 1 km lower. PMCs also show a diurnal variation.
Gerrit Holl, Kaley A. Walker, Stephanie Conway, Naoko Saitoh, Chris D. Boone, Kimberly Strong, and James R. Drummond
Atmos. Meas. Tech., 9, 1961–1980, https://doi.org/10.5194/amt-9-1961-2016, https://doi.org/10.5194/amt-9-1961-2016, 2016
Short summary
Short summary
Methane is a powerful greenhouse gas, and we need to measure it globally with satellite instruments. We compare measurements from two satellites with measurements from the ground in Eureka, Nunavut, Canada to assess their different strengths and weaknesses. The differences between measurements are discussed and assessed considering the details of each measurement technique and processing. Recommendations are provided for utilization of these data sets for monitoring methane in the high Arctic.
Stefan Noël, Klaus Bramstedt, Michael Hilker, Patricia Liebing, Johannes Plieninger, Max Reuter, Alexei Rozanov, Christopher E. Sioris, Heinrich Bovensmann, and John P. Burrows
Atmos. Meas. Tech., 9, 1485–1503, https://doi.org/10.5194/amt-9-1485-2016, https://doi.org/10.5194/amt-9-1485-2016, 2016
Short summary
Short summary
Stratospheric methane (CH4) and carbon dioxide (CO2) profiles have been derived from solar occultation measurements of the SCIAMACHY satellite instrument. The accuracy of these profiles is estimated to be about 5–10 % for CH4 and 2–3 % for CO2, mainly limited by unexpected vertical oscillations. Results are available for August 2002 to April 2012 and latitudes between about 50 and 70° N. From these, time series trends have been estimated, which are in reasonable agreement with total column trends.
M. Chirkov, G. P. Stiller, A. Laeng, S. Kellmann, T. von Clarmann, C. D. Boone, J. W. Elkins, A. Engel, N. Glatthor, U. Grabowski, C. M. Harth, M. Kiefer, F. Kolonjari, P. B. Krummel, A. Linden, C. R. Lunder, B. R. Miller, S. A. Montzka, J. Mühle, S. O'Doherty, J. Orphal, R. G. Prinn, G. Toon, M. K. Vollmer, K. A. Walker, R. F. Weiss, A. Wiegele, and D. Young
Atmos. Chem. Phys., 16, 3345–3368, https://doi.org/10.5194/acp-16-3345-2016, https://doi.org/10.5194/acp-16-3345-2016, 2016
Short summary
Short summary
HCFC-22 global distributions from MIPAS measurements for 2005 to 2012 are presented. Tropospheric trends are in good agreement with ground-based observations. A layer of enhanced HCFC-22 in the upper tropospheric tropics and northern subtropics is identified to come from Asian sources uplifted in the Asian monsoon. Stratospheric distributions provide show seasonal, semi-annual, and QBO-related variations. Hemispheric asymmetries of trends hint towards a change in the stratospheric circulation.
Johannes Plieninger, Alexandra Laeng, Stefan Lossow, Thomas von Clarmann, Gabriele P. Stiller, Sylvia Kellmann, Andrea Linden, Michael Kiefer, Kaley A. Walker, Stefan Noël, Mark E. Hervig, Martin McHugh, Alyn Lambert, Joachim Urban, James W. Elkins, and Donal Murtagh
Atmos. Meas. Tech., 9, 765–779, https://doi.org/10.5194/amt-9-765-2016, https://doi.org/10.5194/amt-9-765-2016, 2016
Short summary
Short summary
We compare concentration profiles of methane and nitrous oxide measured from MIPAS-ENVISAT and derived with a new retrieval setup to those measured by other satellite instruments and to surface measurements. For methane we use profiles measured by ACE-FTS, HALOE and SCIAMACHY; for nitrous oxide we use profiles measured by ACE-FTS, Aura-MLS and Odin-SMR for the comparisons. We give a quantitative bias estimation and compare the estimated errors provided by the instruments.
S. Tegtmeier, M. I. Hegglin, J. Anderson, B. Funke, J. Gille, A. Jones, L. Smith, T. von Clarmann, and K. A. Walker
Earth Syst. Sci. Data, 8, 61–78, https://doi.org/10.5194/essd-8-61-2016, https://doi.org/10.5194/essd-8-61-2016, 2016
Short summary
Short summary
The first comprehensive intercomparison of CFC-11, CFC-12, HF, and SF6 satellite data was performed as part of the SPARC Data Initiative following a new "top-down" concept of satellite measurement validation and thus providing a global picture of the data characteristics. The comparisons will provide basic information on quality and consistency of the various data sets and will serve as a guide for their use in empirical studies of climate and variability, and in model-measurement comparisons.
K. Weigel, A. Rozanov, F. Azam, K. Bramstedt, R. Damadeo, K.-U. Eichmann, C. Gebhardt, D. Hurst, M. Kraemer, S. Lossow, W. Read, N. Spelten, G. P. Stiller, K. A. Walker, M. Weber, H. Bovensmann, and J. P. Burrows
Atmos. Meas. Tech., 9, 133–158, https://doi.org/10.5194/amt-9-133-2016, https://doi.org/10.5194/amt-9-133-2016, 2016
Short summary
Short summary
The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements between 2002 and 2012 with different viewing geometries. The limb viewing geometry allows the retrieval of water vapour profiles in the UTLS (upper troposphere and lower stratosphere) from the near-infrared spectral range (1353–1410 nm). Here, we present data version 3.01 and compare it to other water vapour data.
F. Khosrawi, J. Urban, S. Lossow, G. Stiller, K. Weigel, P. Braesicke, M. C. Pitts, A. Rozanov, J. P. Burrows, and D. Murtagh
Atmos. Chem. Phys., 16, 101–121, https://doi.org/10.5194/acp-16-101-2016, https://doi.org/10.5194/acp-16-101-2016, 2016
Short summary
Short summary
Our sensitivity studies based on air parcel trajectories confirm that Polar stratospheric cloud (PSC) formation is quite sensitive to water vapour and temperature changes. Considering water vapour time series from satellite measurements we do not find a consistent, significant trend in water vapour in the lower stratosphere during the past 15 years (2000–2014). Thus, the severe dentrification observed in 2010/2011 cannot be directly related to increases in stratospheric water vapour.
A. Laeng, J. Plieninger, T. von Clarmann, U. Grabowski, G. Stiller, E. Eckert, N. Glatthor, F. Haenel, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, L. Deaver, A. Engel, M. Hervig, I. Levin, M. McHugh, S. Noël, G. Toon, and K. Walker
Atmos. Meas. Tech., 8, 5251–5261, https://doi.org/10.5194/amt-8-5251-2015, https://doi.org/10.5194/amt-8-5251-2015, 2015
F. J. Haenel, G. P. Stiller, T. von Clarmann, B. Funke, E. Eckert, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, and T. Reddmann
Atmos. Chem. Phys., 15, 13161–13176, https://doi.org/10.5194/acp-15-13161-2015, https://doi.org/10.5194/acp-15-13161-2015, 2015
Short summary
Short summary
Stratospheric circulation is thought to change as a consequence of climate change. Empirical evidence, however, is sparse. In this paper we present latitude- and altitude-resolved trends of the mean age of stratospheric air as derived from SF6 measurements performed by the MIPAS satellite instrument. The mean of the age of stratospheric air is a measure of the intensity of the Brewer-Dobson circulation. In this paper we discuss differences with respect to a preceding analysis by Stiller et al.
D. Pendlebury, D. Plummer, J. Scinocca, P. Sheese, K. Strong, K. Walker, and D. Degenstein
Atmos. Chem. Phys., 15, 12465–12485, https://doi.org/10.5194/acp-15-12465-2015, https://doi.org/10.5194/acp-15-12465-2015, 2015
Short summary
Short summary
The CMAM30 data set takes a chemistry-climate model and relaxes the dynamics to reanalysis, which can then provide chemistry fields not available from the reanalysis data set. This paper addresses this gap by comparing temperature, water vapour, ozone and methane to satellite data to determine and document any biases in the model fields. The lack of ozone destruction and dehydration in the SH polar vortex is shown to be due to the treatment of polar stratosphere clouds in the model.
A. Butz, J. Orphal, R. Checa-Garcia, F. Friedl-Vallon, T. von Clarmann, H. Bovensmann, O. Hasekamp, J. Landgraf, T. Knigge, D. Weise, O. Sqalli-Houssini, and D. Kemper
Atmos. Meas. Tech., 8, 4719–4734, https://doi.org/10.5194/amt-8-4719-2015, https://doi.org/10.5194/amt-8-4719-2015, 2015
Short summary
Short summary
The Geostationary Emission Explorer for Europe (G3E) is a mission concept for a greenhouse gas sounder in geostationary orbit. It is designed to provide column-average concentrations of carbon dioxide, methane, and carbon monoxide with high spatial and 2-hour temporal resolution throughout the central European continent. The prospective data density, precision and accuracy suggest G3E as a key component of a future carbon emission monitoring system.
J. Plieninger, T. von Clarmann, G. P. Stiller, U. Grabowski, N. Glatthor, S. Kellmann, A. Linden, F. Haenel, M. Kiefer, M. Höpfner, A. Laeng, and S. Lossow
Atmos. Meas. Tech., 8, 4657–4670, https://doi.org/10.5194/amt-8-4657-2015, https://doi.org/10.5194/amt-8-4657-2015, 2015
Short summary
Short summary
We present our revised CH4 and N2O profiles derived from MIPAS-ENVISAT spectra, which are now available for the entire measurement period. We describe the retrieval of the profiles and discuss the improvements compared to earlier versions and their effect on the mixing ratios. We analyse the averaging kernels and the resolution of the profiles. An error discussion for both gases is given.
F. Deng, D. B. A. Jones, T. W. Walker, M. Keller, K. W. Bowman, D. K. Henze, R. Nassar, E. A. Kort, S. C. Wofsy, K. A. Walker, A. E. Bourassa, and D. A. Degenstein
Atmos. Chem. Phys., 15, 11773–11788, https://doi.org/10.5194/acp-15-11773-2015, https://doi.org/10.5194/acp-15-11773-2015, 2015
Short summary
Short summary
The upper troposphere and lower stratosphere (UTLS) is characterized by strong gradients in the distribution of long-lived tracers, which are sensitive to discrepancies in transport in models. We found that our model overestimates CO2 in the polar UTLS through comparison of modeled CO2 with aircraft observations. We then corrected the modeled CO2 and quantified the impact of the correction on the flux estimates using an atmospheric model together with atmospheric CO2 measured from a satellite.
S. Fadnavis, K. Semeniuk, M. G. Schultz, M. Kiefer, A. Mahajan, L. Pozzoli, and S. Sonbawane
Atmos. Chem. Phys., 15, 11477–11499, https://doi.org/10.5194/acp-15-11477-2015, https://doi.org/10.5194/acp-15-11477-2015, 2015
Short summary
Short summary
The model and MIPAS satellite data show that there are three regions which contribute substantial pollution to the south Asian UTLS: the Asian summer monsoon (ASM), the North American monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS compared to NAM and WAM outflow. Simulations show that westerly winds drive North American and European pollutants eastward where they can become part of the ASM and lifted to LS.
N. Rahpoe, M. Weber, A. V. Rozanov, K. Weigel, H. Bovensmann, J. P. Burrows, A. Laeng, G. Stiller, T. von Clarmann, E. Kyrölä, V. F. Sofieva, J. Tamminen, K. Walker, D. Degenstein, A. E. Bourassa, R. Hargreaves, P. Bernath, J. Urban, and D. P. Murtagh
Atmos. Meas. Tech., 8, 4369–4381, https://doi.org/10.5194/amt-8-4369-2015, https://doi.org/10.5194/amt-8-4369-2015, 2015
Short summary
Short summary
The analyses among six satellite instruments measuring ozone reveals that the relative drift between the sensors is not significant in the stratosphere and we conclude that merging of data from these instruments is possible. The merged ozone profiles can then be ingested in global climate models for long-term forecasts of ozone and climate change in the atmosphere. The added drift uncertainty is estimated at about 3% per decade (1 sigma) and should be applied in the calculation of ozone trends.
S. Bender, M. Sinnhuber, T. von Clarmann, G. Stiller, B. Funke, M. López-Puertas, J. Urban, K. Pérot, K. A. Walker, and J. P. Burrows
Atmos. Meas. Tech., 8, 4171–4195, https://doi.org/10.5194/amt-8-4171-2015, https://doi.org/10.5194/amt-8-4171-2015, 2015
Short summary
Short summary
We compare the nitric oxide (NO) daily zonal mean number density data sets in the mesosphere and lower thermosphere (MLT, 60km to 150km) from four instruments: ACE-FTS (2004--2010), MIPAS (2005--2012), SCIAMACHY (2008--2012), and SMR (2003--2012). We find that these data sets from different instruments consistently constrain NO in the MLT. Thus, they offer reliable forcing inputs for climate and chemistry climate models as an initial step to include solar and geomagnetic activity.
L. Moreira, K. Hocke, E. Eckert, T. von Clarmann, and N. Kämpfer
Atmos. Chem. Phys., 15, 10999–11009, https://doi.org/10.5194/acp-15-10999-2015, https://doi.org/10.5194/acp-15-10999-2015, 2015
Short summary
Short summary
GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) has provided ozone profiles for the NDACC (Network for the Detection of Atmospheric Composition Change) at Bern since 1994. We performed a trend analysis of our 20-year time series of stratospheric ozone profiles with a multilinear parametric trend estimation method. With our estimated ozone trends we are able to support the stratospheric ozone turnaround, besides a statistically significant negative trend in the lower mesosphere.
N. R. P. Harris, B. Hassler, F. Tummon, G. E. Bodeker, D. Hubert, I. Petropavlovskikh, W. Steinbrecht, J. Anderson, P. K. Bhartia, C. D. Boone, A. Bourassa, S. M. Davis, D. Degenstein, A. Delcloo, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, N. Jones, M. J. Kurylo, E. Kyrölä, M. Laine, S. T. Leblanc, J.-C. Lambert, B. Liley, E. Mahieu, A. Maycock, M. de Mazière, A. Parrish, R. Querel, K. H. Rosenlof, C. Roth, C. Sioris, J. Staehelin, R. S. Stolarski, R. Stübi, J. Tamminen, C. Vigouroux, K. A. Walker, H. J. Wang, J. Wild, and J. M. Zawodny
Atmos. Chem. Phys., 15, 9965–9982, https://doi.org/10.5194/acp-15-9965-2015, https://doi.org/10.5194/acp-15-9965-2015, 2015
Short summary
Short summary
Trends in the vertical distribution of ozone are reported for new and recently revised data sets. The amount of ozone-depleting compounds in the stratosphere peaked in the second half of the 1990s. We examine the trends before and after that peak to see if any change in trend is discernible. The previously reported decreases are confirmed. Furthermore, the downward trend in upper stratospheric ozone has not continued. The possible significance of any increase is discussed in detail.
T. Schieferdecker, S. Lossow, G. P. Stiller, and T. von Clarmann
Atmos. Chem. Phys., 15, 9851–9863, https://doi.org/10.5194/acp-15-9851-2015, https://doi.org/10.5194/acp-15-9851-2015, 2015
Short summary
Short summary
A merged data set of HALOE and MIPAS lower stratospheric water vapour has been constructed. Multivariate linear regression shows that the merged time series can best be explained if a proxy for the 11-year solar cycle is considered. The amplitude of the solar cycle signal in water vapour is slightly higher than that which can be explained by the known solar cycle variation of cold-point temperatures.
A. Babenhauserheide, S. Basu, S. Houweling, W. Peters, and A. Butz
Atmos. Chem. Phys., 15, 9747–9763, https://doi.org/10.5194/acp-15-9747-2015, https://doi.org/10.5194/acp-15-9747-2015, 2015
Short summary
Short summary
We compare two different data assimilation systems for estimating sources and sinks of CO_2 from concentration measurements. The systems are CarbonTracker and TM5-4DVar, which have both been used in a number of scientific studies. We analyze the differences between both models as well as the sensitivity of the estimated sources and sinks to the observation coverage. The results provide a lower limit for the uncertainty of surface carbon fluxes with the current measurement network.
C. McLandress, T. G. Shepherd, A. I. Jonsson, T. von Clarmann, and B. Funke
Atmos. Chem. Phys., 15, 9271–9284, https://doi.org/10.5194/acp-15-9271-2015, https://doi.org/10.5194/acp-15-9271-2015, 2015
Short summary
Short summary
This is the first paper of its kind describing a method for merging the long-term satellite records of global stratospheric temperature from SSU and AMSU to yield a continuous data set from 1979 to present (and beyond). Since global-mean stratospheric temperature is close to radiative equilibrium, our "extended" SSU data set is an important climate record for the detection and attribution of anthropogenic influence.
M. Tao, P. Konopka, F. Ploeger, J.-U. Grooß, R. Müller, C. M. Volk, K. A. Walker, and M. Riese
Atmos. Chem. Phys., 15, 8695–8715, https://doi.org/10.5194/acp-15-8695-2015, https://doi.org/10.5194/acp-15-8695-2015, 2015
Short summary
Short summary
A remarkable major stratospheric sudden warming during the boreal winter 2008/09 is studied with the Chemical Lagrangian Model of the Stratosphere (CLaMS). We investigate how mixing triggered by this event correlates the wave forcing and how transport and mixing affect the composition of the whole stratosphere in the Northern Hemisphere, by using the tracer-tracer correlation technique.
T. von Clarmann, N. Glatthor, and J. Plieninger
Atmos. Meas. Tech., 8, 2749–2757, https://doi.org/10.5194/amt-8-2749-2015, https://doi.org/10.5194/amt-8-2749-2015, 2015
Short summary
Short summary
We propose a user-friendly representation of remotely sensed vertical profiles of atmospheric constituents. The data are provided on a fixed pressure grid coarse enough to allow a virtually unconstrained retrieval. Thus the data user need not apply the averaging kernel. To avoid data interpolation, the grid is chosen to be a subset of the pressure grid often used in the modelling community. For representation, the profiles have been transformed to rectangular base functions.
R. Eichinger, P. Jöckel, and S. Lossow
Atmos. Chem. Phys., 15, 7003–7015, https://doi.org/10.5194/acp-15-7003-2015, https://doi.org/10.5194/acp-15-7003-2015, 2015
M. Höpfner, C. D. Boone, B. Funke, N. Glatthor, U. Grabowski, A. Günther, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, H. C. Pumphrey, W. G. Read, A. Roiger, G. Stiller, H. Schlager, T. von Clarmann, and K. Wissmüller
Atmos. Chem. Phys., 15, 7017–7037, https://doi.org/10.5194/acp-15-7017-2015, https://doi.org/10.5194/acp-15-7017-2015, 2015
R. Eichinger, P. Jöckel, S. Brinkop, M. Werner, and S. Lossow
Atmos. Chem. Phys., 15, 5537–5555, https://doi.org/10.5194/acp-15-5537-2015, https://doi.org/10.5194/acp-15-5537-2015, 2015
A. Keppens, J.-C. Lambert, J. Granville, G. Miles, R. Siddans, J. C. A. van Peet, R. J. van der A, D. Hubert, T. Verhoelst, A. Delcloo, S. Godin-Beekmann, R. Kivi, R. Stübi, and C. Zehner
Atmos. Meas. Tech., 8, 2093–2120, https://doi.org/10.5194/amt-8-2093-2015, https://doi.org/10.5194/amt-8-2093-2015, 2015
Short summary
Short summary
This work thoroughly discusses a methodology, as summarized in a flowchart, for the round-robin evaluation and geophysical validation of nadir ozone profile retrievals and applies the proposed best practice to a pair of optimal-estimation algorithms run on exactly the same level-1 radiance measurements. The quality assessment combines data set content studies, information content studies, and comparisons with ground-based reference measurements.
T. Fytterer, M. G. Mlynczak, H. Nieder, K. Pérot, M. Sinnhuber, G. Stiller, and J. Urban
Atmos. Chem. Phys., 15, 3327–3338, https://doi.org/10.5194/acp-15-3327-2015, https://doi.org/10.5194/acp-15-3327-2015, 2015
Short summary
Short summary
Energetic particles from the sun produce NOx (=N+NO+NO2) in the mesosphere/lower thermosphere. The NOx can be transported downward in the stratosphere during polar winter where NOx eventually depletes O3. This entire chain is the so-called energetic particle precipitation (EPP) indirect effect.
Here we show downward propagating negative stratospheric O3 anomalies during Antarctic polar winter. The O3 anomalies are caused by geomagnetic activity and show strong hints of the EPP indirect effect.
P. E. Sheese, C. D. Boone, and K. A. Walker
Atmos. Meas. Tech., 8, 741–750, https://doi.org/10.5194/amt-8-741-2015, https://doi.org/10.5194/amt-8-741-2015, 2015
T. Sakazaki, M. Shiotani, M. Suzuki, D. Kinnison, J. M. Zawodny, M. McHugh, and K. A. Walker
Atmos. Chem. Phys., 15, 829–843, https://doi.org/10.5194/acp-15-829-2015, https://doi.org/10.5194/acp-15-829-2015, 2015
Short summary
Short summary
The solar occultation measurements measure the atmosphere at sunrise (SR) and sunset (SS). It has been reported that there is a significant difference in the observed amount of stratospheric ozone between SR and SS. This study first revealed that this difference can be largely explained by diurnal variations in ozone, particularly those caused by vertical transport by the atmospheric tidal winds. Our results would be helpful for the construction of combined data sets from SR and SS profiles.
N. Glatthor, M. Höpfner, G. P. Stiller, T. von Clarmann, B. Funke, S. Lossow, E. Eckert, U. Grabowski, S. Kellmann, A. Linden, K. A. Walker, and A. Wiegele
Atmos. Chem. Phys., 15, 563–582, https://doi.org/10.5194/acp-15-563-2015, https://doi.org/10.5194/acp-15-563-2015, 2015
A. A. Penckwitt, G. E. Bodeker, P. Stoll, J. Lewis, T. von Clarmann, and A. Jones
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-235-2015, https://doi.org/10.5194/amtd-8-235-2015, 2015
Preprint withdrawn
S. Fadnavis, M. G. Schultz, K. Semeniuk, A. S. Mahajan, L. Pozzoli, S. Sonbawne, S. D. Ghude, M. Kiefer, and E. Eckert
Atmos. Chem. Phys., 14, 12725–12743, https://doi.org/10.5194/acp-14-12725-2014, https://doi.org/10.5194/acp-14-12725-2014, 2014
Short summary
Short summary
The Asian summer monsoon transports pollutants from local emission sources to the upper troposphere and lower stratosphere (UTLS). The increasing trend of these pollutants may have climatic impact. This study addresses the impact of convectively lifted Indian and Chinese emissions on the ULTS. Sensitivity experiments with emission changes in particular regions show that Chinese emissions have a greater impact on the concentrations of NOY species than Indian emissions.
A. Laeng, U. Grabowski, T. von Clarmann, G. Stiller, N. Glatthor, M. Höpfner, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, V. Sofieva, I. Petropavlovskikh, D. Hubert, T. Bathgate, P. Bernath, C. D. Boone, C. Clerbaux, P. Coheur, R. Damadeo, D. Degenstein, S. Frith, L. Froidevaux, J. Gille, K. Hoppel, M. McHugh, Y. Kasai, J. Lumpe, N. Rahpoe, G. Toon, T. Sano, M. Suzuki, J. Tamminen, J. Urban, K. Walker, M. Weber, and J. Zawodny
Atmos. Meas. Tech., 7, 3971–3987, https://doi.org/10.5194/amt-7-3971-2014, https://doi.org/10.5194/amt-7-3971-2014, 2014
L. Hoffmann, C. M. Hoppe, R. Müller, G. S. Dutton, J. C. Gille, S. Griessbach, A. Jones, C. I. Meyer, R. Spang, C. M. Volk, and K. A. Walker
Atmos. Chem. Phys., 14, 12479–12497, https://doi.org/10.5194/acp-14-12479-2014, https://doi.org/10.5194/acp-14-12479-2014, 2014
Short summary
Short summary
Stratospheric lifetimes determine the global warming and ozone depletion potentials of chlorofluorocarbons. We present new estimates of the CFC-11/CFC-12 lifetime ratio from satellite and model data (ACE-FTS, HIRDLS, MIPAS, and EMAC/CLaMS). Our estimates of 0.46+/-0.04 (satellites) and 0.48+/-0.07 (model) are in excellent agreement with the recent SPARC reassessment. Having smaller uncertainties than other studies, our results can help to better constrain future CFC lifetime recommendations.
M. García-Comas, B. Funke, A. Gardini, M. López-Puertas, A. Jurado-Navarro, T. von Clarmann, G. Stiller, M. Kiefer, C. D. Boone, T. Leblanc, B. T. Marshall, M. J. Schwartz, and P. E. Sheese
Atmos. Meas. Tech., 7, 3633–3651, https://doi.org/10.5194/amt-7-3633-2014, https://doi.org/10.5194/amt-7-3633-2014, 2014
Short summary
Short summary
We present the new vM21 MIPAS temperatures from 20 to 102km for all of its 2005-2012 MA, UA and NLC measurements. The main upgrades are the update of ESA L1b spectra, spectroscopic database and O and CO2 climatologies, and improvement in Tk-gradient and offset regularizations and apodization accuracy. The vM21 Tk's correct the main systematic errors of previous versions and lead to remarkable improvement in their comparisons with ACE-FTS, MLS, OSIRIS, SABER and SOFIE and the MLO and TMF lidars.
T. von Clarmann
Atmos. Meas. Tech., 7, 3023–3034, https://doi.org/10.5194/amt-7-3023-2014, https://doi.org/10.5194/amt-7-3023-2014, 2014
J. E. Franklin, J. R. Drummond, D. Griffin, J. R. Pierce, D. L. Waugh, P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, J. W. Taylor, J. D. Allan, H. Coe, K. A. Walker, L. Chisholm, T. J. Duck, J. T. Hopper, Y. Blanchard, M. D. Gibson, K. R. Curry, K. M. Sakamoto, G. Lesins, L. Dan, J. Kliever, and A. Saha
Atmos. Chem. Phys., 14, 8449–8460, https://doi.org/10.5194/acp-14-8449-2014, https://doi.org/10.5194/acp-14-8449-2014, 2014
S. Fadnavis, K. Semeniuk, M. G. Schultz, A. Mahajan, L. Pozzoli, S. Sonbawane, and M. Kiefer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-20159-2014, https://doi.org/10.5194/acpd-14-20159-2014, 2014
Revised manuscript not accepted
M. Sinnhuber, B. Funke, T. von Clarmann, M. Lopez-Puertas, G. P. Stiller, and A. Seppälä
Atmos. Chem. Phys., 14, 7681–7692, https://doi.org/10.5194/acp-14-7681-2014, https://doi.org/10.5194/acp-14-7681-2014, 2014
C. E. Sioris, C. D. Boone, R. Nassar, K. J. Sutton, I. E. Gordon, K. A. Walker, and P. F. Bernath
Atmos. Meas. Tech., 7, 2243–2262, https://doi.org/10.5194/amt-7-2243-2014, https://doi.org/10.5194/amt-7-2243-2014, 2014
V. F. Sofieva, J. Tamminen, E. Kyrölä, A. Laeng, T. von Clarmann, F. Dalaudier, A. Hauchecorne, J.-L. Bertaux, G. Barrot, L. Blanot, D. Fussen, and F. Vanhellemont
Atmos. Meas. Tech., 7, 2147–2158, https://doi.org/10.5194/amt-7-2147-2014, https://doi.org/10.5194/amt-7-2147-2014, 2014
C. Viatte, K. Strong, K. A. Walker, and J. R. Drummond
Atmos. Meas. Tech., 7, 1547–1570, https://doi.org/10.5194/amt-7-1547-2014, https://doi.org/10.5194/amt-7-1547-2014, 2014
B. Hassler, I. Petropavlovskikh, J. Staehelin, T. August, P. K. Bhartia, C. Clerbaux, D. Degenstein, M. De Mazière, B. M. Dinelli, A. Dudhia, G. Dufour, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, J. Granville, N. R. P. Harris, K. Hoppel, D. Hubert, Y. Kasai, M. J. Kurylo, E. Kyrölä, J.-C. Lambert, P. F. Levelt, C. T. McElroy, R. D. McPeters, R. Munro, H. Nakajima, A. Parrish, P. Raspollini, E. E. Remsberg, K. H. Rosenlof, A. Rozanov, T. Sano, Y. Sasano, M. Shiotani, H. G. J. Smit, G. Stiller, J. Tamminen, D. W. Tarasick, J. Urban, R. J. van der A, J. P. Veefkind, C. Vigouroux, T. von Clarmann, C. von Savigny, K. A. Walker, M. Weber, J. Wild, and J. M. Zawodny
Atmos. Meas. Tech., 7, 1395–1427, https://doi.org/10.5194/amt-7-1395-2014, https://doi.org/10.5194/amt-7-1395-2014, 2014
F. Friederich, M. Sinnhuber, B. Funke, T. von Clarmann, and J. Orphal
Atmos. Chem. Phys., 14, 4055–4064, https://doi.org/10.5194/acp-14-4055-2014, https://doi.org/10.5194/acp-14-4055-2014, 2014
E. Eckert, T. von Clarmann, M. Kiefer, G. P. Stiller, S. Lossow, N. Glatthor, D. A. Degenstein, L. Froidevaux, S. Godin-Beekmann, T. Leblanc, S. McDermid, M. Pastel, W. Steinbrecht, D. P. J. Swart, K. A. Walker, and P. F. Bernath
Atmos. Chem. Phys., 14, 2571–2589, https://doi.org/10.5194/acp-14-2571-2014, https://doi.org/10.5194/acp-14-2571-2014, 2014
E. Mahieu, R. Zander, G. C. Toon, M. K. Vollmer, S. Reimann, J. Mühle, W. Bader, B. Bovy, B. Lejeune, C. Servais, P. Demoulin, G. Roland, P. F. Bernath, C. D. Boone, K. A. Walker, and P. Duchatelet
Atmos. Meas. Tech., 7, 333–344, https://doi.org/10.5194/amt-7-333-2014, https://doi.org/10.5194/amt-7-333-2014, 2014
C. H. Jackman, C. E. Randall, V. L. Harvey, S. Wang, E. L. Fleming, M. López-Puertas, B. Funke, and P. F. Bernath
Atmos. Chem. Phys., 14, 1025–1038, https://doi.org/10.5194/acp-14-1025-2014, https://doi.org/10.5194/acp-14-1025-2014, 2014
J.-U. Grooß, I. Engel, S. Borrmann, W. Frey, G. Günther, C. R. Hoyle, R. Kivi, B. P. Luo, S. Molleker, T. Peter, M. C. Pitts, H. Schlager, G. Stiller, H. Vömel, K. A. Walker, and R. Müller
Atmos. Chem. Phys., 14, 1055–1073, https://doi.org/10.5194/acp-14-1055-2014, https://doi.org/10.5194/acp-14-1055-2014, 2014
C. Adams, A. E. Bourassa, V. Sofieva, L. Froidevaux, C. A. McLinden, D. Hubert, J.-C. Lambert, C. E. Sioris, and D. A. Degenstein
Atmos. Meas. Tech., 7, 49–64, https://doi.org/10.5194/amt-7-49-2014, https://doi.org/10.5194/amt-7-49-2014, 2014
H. Sagawa, T. O. Sato, P. Baron, E. Dupuy, N. Livesey, J. Urban, T. von Clarmann, A. de Lange, G. Wetzel, B. J. Connor, A. Kagawa, D. Murtagh, and Y. Kasai
Atmos. Meas. Tech., 6, 3325–3347, https://doi.org/10.5194/amt-6-3325-2013, https://doi.org/10.5194/amt-6-3325-2013, 2013
V. F. Sofieva, N. Rahpoe, J. Tamminen, E. Kyrölä, N. Kalakoski, M. Weber, A. Rozanov, C. von Savigny, A. Laeng, T. von Clarmann, G. Stiller, S. Lossow, D. Degenstein, A. Bourassa, C. Adams, C. Roth, N. Lloyd, P. Bernath, R. J. Hargreaves, J. Urban, D. Murtagh, A. Hauchecorne, F. Dalaudier, M. van Roozendael, N. Kalb, and C. Zehner
Earth Syst. Sci. Data, 5, 349–363, https://doi.org/10.5194/essd-5-349-2013, https://doi.org/10.5194/essd-5-349-2013, 2013
T. Sugita, Y. Kasai, Y. Terao, S. Hayashida, G. L. Manney, W. H. Daffer, H. Sagawa, M. Suzuki, M. Shiotani, K. A. Walker, C. D. Boone, and P. F. Bernath
Atmos. Meas. Tech., 6, 3099–3113, https://doi.org/10.5194/amt-6-3099-2013, https://doi.org/10.5194/amt-6-3099-2013, 2013
P. Braesicke, J. Keeble, X. Yang, G. Stiller, S. Kellmann, N. L. Abraham, A. Archibald, P. Telford, and J. A. Pyle
Atmos. Chem. Phys., 13, 10677–10688, https://doi.org/10.5194/acp-13-10677-2013, https://doi.org/10.5194/acp-13-10677-2013, 2013
M. Höpfner, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, J. Orphal, G. Stiller, T. von Clarmann, B. Funke, and C. D. Boone
Atmos. Chem. Phys., 13, 10405–10423, https://doi.org/10.5194/acp-13-10405-2013, https://doi.org/10.5194/acp-13-10405-2013, 2013
D. Griffin, K. A. Walker, J. E. Franklin, M. Parrington, C. Whaley, J. Hopper, J. R. Drummond, P. I. Palmer, K. Strong, T. J. Duck, I. Abboud, P. F. Bernath, C. Clerbaux, P.-F. Coheur, K. R. Curry, L. Dan, E. Hyer, J. Kliever, G. Lesins, M. Maurice, A. Saha, K. Tereszchuk, and D. Weaver
Atmos. Chem. Phys., 13, 10227–10241, https://doi.org/10.5194/acp-13-10227-2013, https://doi.org/10.5194/acp-13-10227-2013, 2013
J. Cuesta, M. Eremenko, X. Liu, G. Dufour, Z. Cai, M. Höpfner, T. von Clarmann, P. Sellitto, G. Foret, B. Gaubert, M. Beekmann, J. Orphal, K. Chance, R. Spurr, and J.-M. Flaud
Atmos. Chem. Phys., 13, 9675–9693, https://doi.org/10.5194/acp-13-9675-2013, https://doi.org/10.5194/acp-13-9675-2013, 2013
S. Bender, M. Sinnhuber, J. P. Burrows, M. Langowski, B. Funke, and M. López-Puertas
Atmos. Meas. Tech., 6, 2521–2531, https://doi.org/10.5194/amt-6-2521-2013, https://doi.org/10.5194/amt-6-2521-2013, 2013
P. Raspollini, B. Carli, M. Carlotti, S. Ceccherini, A. Dehn, B. M. Dinelli, A. Dudhia, J.-M. Flaud, M. López-Puertas, F. Niro, J. J. Remedios, M. Ridolfi, H. Sembhi, L. Sgheri, and T. von Clarmann
Atmos. Meas. Tech., 6, 2419–2439, https://doi.org/10.5194/amt-6-2419-2013, https://doi.org/10.5194/amt-6-2419-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
Y. Kasai, H. Sagawa, D. Kreyling, E. Dupuy, P. Baron, J. Mendrok, K. Suzuki, T. O. Sato, T. Nishibori, S. Mizobuchi, K. Kikuchi, T. Manabe, H. Ozeki, T. Sugita, M. Fujiwara, Y. Irimajiri, K. A. Walker, P. F. Bernath, C. Boone, G. Stiller, T. von Clarmann, J. Orphal, J. Urban, D. Murtagh, E. J. Llewellyn, D. Degenstein, A. E. Bourassa, N. D. Lloyd, L. Froidevaux, M. Birk, G. Wagner, F. Schreier, J. Xu, P. Vogt, T. Trautmann, and M. Yasui
Atmos. Meas. Tech., 6, 2311–2338, https://doi.org/10.5194/amt-6-2311-2013, https://doi.org/10.5194/amt-6-2311-2013, 2013
R. L. Gattinger, E. Kyrölä, C. D. Boone, W. F. J. Evans, K. A. Walker, I. C. McDade, P. F. Bernath, and E. J. Llewellyn
Atmos. Chem. Phys., 13, 7813–7824, https://doi.org/10.5194/acp-13-7813-2013, https://doi.org/10.5194/acp-13-7813-2013, 2013
M. Khosravi, P. Baron, J. Urban, L. Froidevaux, A. I. Jonsson, Y. Kasai, K. Kuribayashi, C. Mitsuda, D. P. Murtagh, H. Sagawa, M. L. Santee, T. O. Sato, M. Shiotani, M. Suzuki, T. von Clarmann, K. A. Walker, and S. Wang
Atmos. Chem. Phys., 13, 7587–7606, https://doi.org/10.5194/acp-13-7587-2013, https://doi.org/10.5194/acp-13-7587-2013, 2013
B. Tschanz, C. Straub, D. Scheiben, K. A. Walker, G. P. Stiller, and N. Kämpfer
Atmos. Meas. Tech., 6, 1725–1745, https://doi.org/10.5194/amt-6-1725-2013, https://doi.org/10.5194/amt-6-1725-2013, 2013
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013, https://doi.org/10.5194/acp-13-6239-2013, 2013
G. Wetzel, H. Oelhaf, G. Berthet, A. Bracher, C. Cornacchia, D. G. Feist, H. Fischer, A. Fix, M. Iarlori, A. Kleinert, A. Lengel, M. Milz, L. Mona, S. C. Müller, J. Ovarlez, G. Pappalardo, C. Piccolo, P. Raspollini, J.-B. Renard, V. Rizi, S. Rohs, C. Schiller, G. Stiller, M. Weber, and G. Zhang
Atmos. Chem. Phys., 13, 5791–5811, https://doi.org/10.5194/acp-13-5791-2013, https://doi.org/10.5194/acp-13-5791-2013, 2013
M. Toohey and T. von Clarmann
Atmos. Meas. Tech., 6, 937–948, https://doi.org/10.5194/amt-6-937-2013, https://doi.org/10.5194/amt-6-937-2013, 2013
F. Khosrawi, R. Müller, J. Urban, M. H. Proffitt, G. Stiller, M. Kiefer, S. Lossow, D. Kinnison, F. Olschewski, M. Riese, and D. Murtagh
Atmos. Chem. Phys., 13, 3619–3641, https://doi.org/10.5194/acp-13-3619-2013, https://doi.org/10.5194/acp-13-3619-2013, 2013
A. Moss, R. J. Sica, E. McCullough, K. Strawbridge, K. Walker, and J. Drummond
Atmos. Meas. Tech., 6, 741–749, https://doi.org/10.5194/amt-6-741-2013, https://doi.org/10.5194/amt-6-741-2013, 2013
F. Friederich, T. von Clarmann, B. Funke, H. Nieder, J. Orphal, M. Sinnhuber, G. P. Stiller, and J. M. Wissing
Atmos. Chem. Phys., 13, 2531–2539, https://doi.org/10.5194/acp-13-2531-2013, https://doi.org/10.5194/acp-13-2531-2013, 2013
S. Takele Kenea, G. Mengistu Tsidu, T. Blumenstock, F. Hase, T. von Clarmann, and G. P. Stiller
Atmos. Meas. Tech., 6, 495–509, https://doi.org/10.5194/amt-6-495-2013, https://doi.org/10.5194/amt-6-495-2013, 2013
C. Adams, K. Strong, X. Zhao, A. E. Bourassa, W. H. Daffer, D. Degenstein, J. R. Drummond, E. E. Farahani, A. Fraser, N. D. Lloyd, G. L. Manney, C. A. McLinden, M. Rex, C. Roth, S. E. Strahan, K. A. Walker, and I. Wohltmann
Atmos. Chem. Phys., 13, 611–624, https://doi.org/10.5194/acp-13-611-2013, https://doi.org/10.5194/acp-13-611-2013, 2013
S. Kellmann, T. von Clarmann, G. P. Stiller, E. Eckert, N. Glatthor, M. Höpfner, M. Kiefer, J. Orphal, B. Funke, U. Grabowski, A. Linden, G. S. Dutton, and J. W. Elkins
Atmos. Chem. Phys., 12, 11857–11875, https://doi.org/10.5194/acp-12-11857-2012, https://doi.org/10.5194/acp-12-11857-2012, 2012
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Validation and Intercomparisons
First evaluation of the GEMS glyoxal products against TROPOMI and ground-based measurements
Validation of GEMS tropospheric NO2 columns and their diurnal variation with ground-based DOAS measurements
Using open-path dual-comb spectroscopy to monitor methane emissions from simulated grazing cattle
Greenhouse gas column observations from a portable spectrometer in Uganda
Independent validation of IASI/MetOp-A LMD and RAL CH4 products using CAMS model, in situ profiles, and ground-based FTIR measurements
Joint spectral retrievals of ozone with Suomi NPP CrIS augmented by S5P/TROPOMI
An evaluation of atmospheric absorption models at millimetre and sub-millimetre wavelengths using airborne observations
Validation of the version 4.5 MAESTRO ozone and NO2 measurements
Applicability of the inverse dispersion method to measure emissions from animal housings
Validation of ACE-FTS version 5.2 ozone data with ozonesonde measurements
5 years of Sentinel-5P TROPOMI operational ozone profiling and geophysical validation using ozonesonde and lidar ground-based networks
Using a portable FTIR spectrometer to evaluate the consistency of Total Carbon Column Observing Network (TCCON) measurements on a global scale: the Collaborative Carbon Column Observing Network (COCCON) travel standard
Comparison of the H2O, HDO and δD stratospheric climatologies between the MIPAS-ESA V8, MIPAS-IMK V5 and ACE-FTS V4.1/4.2 satellite datasets
TROPESS-CrIS CO single-pixel vertical profiles: intercomparisons with MOPITT and model simulations for 2020 western US wildfires
TOLNet validation of satellite ozone profiles in the troposphere: impact of retrieval wavelengths
An uncertainty methodology for solar occultation flux measurements: ammonia emissions from livestock production
Validation of Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) chlorodifluoromethane (HCFC-22) in the upper troposphere and lower stratosphere
First validation of high-resolution satellite-derived methane emissions from an active gas leak in the UK
Diurnal variations of NO2 tropospheric vertical column density over the Seoul Metropolitan Area from the Geostationary Environment Monitoring Spectrometer (GEMS): seasonal differences and impacts of varying a priori NO2 profile data
Ship- and aircraft-based XCH4 over oceans as a new tool for satellite validation
Validation of 12 years (2008–2019) of IASI-CO with IAGOS aircraft observations
Single-blind test of nine methane-sensing satellite systems from three continents
Water vapor measurements inside clouds and storms using a differential absorption radar
Evaluation of the first year of Pandora NO2 measurements over Beijing and application to satellite validation
Validation of MUSES NH3 observations from AIRS and CrIS against aircraft measurements from DISCOVER-AQ and a surface network in the Magic Valley
Benchmarking data-driven inversion methods for the estimation of local CO2 emissions from XCO2 and NO2 satellite images
Performance and sensitivity of column-wise and pixel-wise methane retrievals for imaging spectrometers
Methane point source quantification using MethaneAIR: a new airborne imaging spectrometer
Intercomparison of long-term ground-based measurements of tropospheric and stratospheric ozone at Lauder, New Zealand (45S)
Evaluation of total ozone measurements from Geostationary Environmental Monitoring Spectrometer (GEMS)
To new heights by flying low: comparison of aircraft vertical NO2 profiles to model simulations and implications for TROPOMI NO2 retrievals
Local comparisons of tropospheric ozone: vertical soundings at two neighbouring stations in southern Bavaria
Ground-based Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of NO2 and H2CO at Kinshasa and comparisons with TROPOMI observations
Total column ozone trends from the NASA Merged Ozone time series 1979 to 2021 showing latitude-dependent ozone recovery dates (1994 to 1998)
The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records
Vicarious calibration of the Tropospheric Monitoring Instrument (TROPOMI) short-wave infrared (SWIR) module over the Railroad Valley Playa
First-time comparison between NO2 vertical columns from Geostationary Environmental Monitoring Spectrometer (GEMS) and Pandora measurements
A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases
Evaluating the consistency between OCO-2 and OCO-3 XCO2 estimates derived from the NASA ACOS version 10 retrieval algorithm
OLCI-A/B tandem phase: evaluation of FLuorescence EXplorer (FLEX)-like radiances and estimation of systematic differences between OLCI-A and OLCI-FLEX
Multi-parameter dynamical diagnostics for upper tropospheric and lower stratospheric studies
An approach to track instrument calibration and produce consistent products with the version-8 total column ozone algorithm (V8TOZ)
Satellite remote-sensing capability to assess tropospheric-column ratios of formaldehyde and nitrogen dioxide: case study during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018) field campaign
Validation of Sentinel-5P TROPOMI tropospheric NO2 products by comparison with NO2 measurements from airborne imaging DOAS, ground-based stationary DOAS, and mobile car DOAS measurements during the S5P-VAL-DE-Ruhr campaign
Evaluation of open- and closed-path sampling systems for the determination of emission rates of NH3 and CH4 with inverse dispersion modeling
Performance of AIRS ozone retrieval over the central Himalayas: use of ozonesonde and other satellite datasets
Solar occultation measurement of mesospheric ozone by SAGE III/ISS: impact of variations along the line of sight caused by photochemistry
Understanding the potential of Sentinel-2 for monitoring methane point emissions
TROPOMI/S5P Total Column Water Vapor validation against AERONET ground-based measurements
Assessing the consistency of satellite-derived upper tropospheric humidity measurements
Eunjo S. Ha, Rokjin J. Park, Hyeong-Ahn Kwon, Gitaek T. Lee, Sieun D. Lee, Seunga Shin, Dong-Won Lee, Hyunkee Hong, Christophe Lerot, Isabelle De Smedt, Thomas Danckaert, Francois Hendrick, and Hitoshi Irie
Atmos. Meas. Tech., 17, 6369–6384, https://doi.org/10.5194/amt-17-6369-2024, https://doi.org/10.5194/amt-17-6369-2024, 2024
Short summary
Short summary
In this study, we evaluated the GEMS glyoxal products by comparing them with TROPOMI and MAX-DOAS measurements. GEMS and TROPOMI VCDs present similar spatial distributions. Monthly variations in GEMS VCDs and TROPOMI and MAX-DOAS VCDs differ in northeastern Asia, which we attributed to a polluted reference spectrum and high NO2 concentrations. GEMS glyoxal products with unparalleled temporal resolution would enrich our understanding of VOC emissions and diurnal variation.
Kezia Lange, Andreas Richter, Tim Bösch, Bianca Zilker, Miriam Latsch, Lisa K. Behrens, Chisom M. Okafor, Hartmut Bösch, John P. Burrows, Alexis Merlaud, Gaia Pinardi, Caroline Fayt, Martina M. Friedrich, Ermioni Dimitropoulou, Michel Van Roozendael, Steffen Ziegler, Simona Ripperger-Lukosiunaite, Leon Kuhn, Bianca Lauster, Thomas Wagner, Hyunkee Hong, Donghee Kim, Lim-Seok Chang, Kangho Bae, Chang-Keun Song, Jong-Uk Park, and Hanlim Lee
Atmos. Meas. Tech., 17, 6315–6344, https://doi.org/10.5194/amt-17-6315-2024, https://doi.org/10.5194/amt-17-6315-2024, 2024
Short summary
Short summary
Instruments for air quality observations on geostationary satellites provide multiple observations per day and allow for the analysis of the diurnal variation of important air pollutants such as nitrogen dioxide (NO2) over large areas. The South Korean instrument GEMS, launched in February 2020, is the first instrument in geostationary orbit and covers a large part of Asia. Our investigations show the observed diurnal evolution of NO2 at different measurement sites.
Chinthaka Weerasekara, Lindsay C. Morris, Nathan A. Malarich, Fabrizio R. Giorgetta, Daniel I. Herman, Kevin C. Cossel, Nathan R. Newbury, Clenton E. Owensby, Stephen M. Welch, Cosmin Blaga, Brett D. DePaola, Ian Coddington, Brian R. Washburn, and Eduardo A. Santos
Atmos. Meas. Tech., 17, 6107–6117, https://doi.org/10.5194/amt-17-6107-2024, https://doi.org/10.5194/amt-17-6107-2024, 2024
Short summary
Short summary
Most methane emissions during the life cycle of beef cattle occur during the grazing phase. Measuring methane in grazing systems is difficult due to the high mobility and low density of animals. This work investigates if dual-comb spectroscopy can measure methane emissions from small cattle herds. An enhancement of 10 nmol mol-1 methane above the atmospheric background was measured, equivalent to 20 head located 60 m away. The calculated methane flux was within 5 % of the actual release rate.
Neil Humpage, Hartmut Boesch, William Okello, Jia Chen, Florian Dietrich, Mark F. Lunt, Liang Feng, Paul I. Palmer, and Frank Hase
Atmos. Meas. Tech., 17, 5679–5707, https://doi.org/10.5194/amt-17-5679-2024, https://doi.org/10.5194/amt-17-5679-2024, 2024
Short summary
Short summary
We used a Bruker EM27/SUN spectrometer within an automated weatherproof enclosure to measure greenhouse gas column concentrations over a 3-month period in Jinja, Uganda. The portability of the EM27/SUN allows us to evaluate satellite and model data in locations not covered by traditional validation networks. This is of particular value in tropical Africa, where extensive terrestrial ecosystems are a significant store of carbon and play a key role in the atmospheric budgets of CO2 and CH4.
Bart Dils, Minqiang Zhou, Claude Camy-Peyret, Martine De Mazière, Yannick Kangah, Bavo Langerock, Pascal Prunet, Carmine Serio, Richard Siddans, and Brian Kerridge
Atmos. Meas. Tech., 17, 5491–5524, https://doi.org/10.5194/amt-17-5491-2024, https://doi.org/10.5194/amt-17-5491-2024, 2024
Short summary
Short summary
The paper discusses two very distinct methane products from the IASI instrument aboard the MetOp-A satellite. One (referred to as LMD NLISv8.3) uses a machine-learning approach, while the other (RALv2.0) uses a more conventional optimal estimation approach. We used a variety of model and independent reference measurement data to assess both products' overall quality, their differences, and specific aspects of each product that would benefit from further analysis by the product development teams.
Edward Malina, Kevin W. Bowman, Valentin Kantchev, Le Kuai, Thomas P. Kurosu, Kazuyuki Miyazaki, Vijay Natraj, Gregory B. Osterman, Fabiano Oyafuso, and Matthew D. Thill
Atmos. Meas. Tech., 17, 5341–5371, https://doi.org/10.5194/amt-17-5341-2024, https://doi.org/10.5194/amt-17-5341-2024, 2024
Short summary
Short summary
Characterizing the distribution of ozone in the atmosphere is a challenging problem, with current Earth observation satellites using either thermal infrared (TIR) or ultraviolet (UV) instruments, sensitive to different portions of the atmosphere, making it difficult to gain a full picture. In this work, we combine measurements from the TIR and UV instruments Suomi NPP CrIS and Sentinel-5P/TROPOMI to improve sensitivity through the whole atmosphere and improve knowledge of ozone distribution.
Stuart Fox, Vinia Mattioli, Emma Turner, Alan Vance, Domenico Cimini, and Donatello Gallucci
Atmos. Meas. Tech., 17, 4957–4978, https://doi.org/10.5194/amt-17-4957-2024, https://doi.org/10.5194/amt-17-4957-2024, 2024
Short summary
Short summary
Airborne observations are used to evaluate two models for absorption and emission by atmospheric gases, including water vapour and oxygen, at microwave and sub-millimetre wavelengths. These models are needed for the Ice Cloud Imager (ICI) on the next generation of European polar-orbiting weather satellites, which measures at frequencies up to 664 GHz. Both models can provide a good match to measurements from airborne radiometers and are sufficiently accurate for use with ICI.
Paul S. Jeffery, James R. Drummond, C. Thomas McElroy, Kaley A. Walker, and Jiansheng Zou
EGUsphere, https://doi.org/10.5194/egusphere-2024-2115, https://doi.org/10.5194/egusphere-2024-2115, 2024
Short summary
Short summary
The MAESTRO instrument has been monitoring ozone and NO2 since February 2004. A new version of these data products has recently been released; however, these new products must be validated against other datasets to ensure their validity. This study presents such an assessment, using measurements from eleven satellite instruments to characterize the new MAESTRO products. In the stratosphere, good agreement is found for ozone and acceptable agreement is found for NO2 with these other datasets.
Marcel Bühler, Christoph Häni, Albrecht Neftel, Patrice Bühler, Christof Ammann, and Thomas Kupper
Atmos. Meas. Tech., 17, 4649–4658, https://doi.org/10.5194/amt-17-4649-2024, https://doi.org/10.5194/amt-17-4649-2024, 2024
Short summary
Short summary
Methane was released from an artificial source inside a barn to test the applicability of the inverse dispersion method (IDM). Multiple open-path concentration devices and ultrasonic anemometers were used at the site. It is concluded that, for the present study case, the effect of a building and a tree in the main wind axis led to a systematic underestimation of the IDM-derived emission rate probably due to deviations in the wind field and turbulent dispersion from the ideal assumptions.
Jiansheng Zou, Kaley A. Walker, Patrick E. Sheese, Chris D. Boone, Ryan M. Stauffer, Anne M. Thompson, and David W. Tarasick
EGUsphere, https://doi.org/10.5194/egusphere-2024-1916, https://doi.org/10.5194/egusphere-2024-1916, 2024
Short summary
Short summary
Ozone measurements from the ACE-FTS satellite instrument have been compared to worldwide balloon-borne ozonesonde profiles using pairs of closely-spaced profiles and monthly averaged profiles. ACE-FTS typically measures more ozone in the stratosphere by up to 10 %. The long-term stability of the ACE-FTS ozone data is good exhibiting small (but not significant) drifts of less than 3 % per decade in the stratosphere. Lower in the profiles, the calculated drifts are larger (up to 10 % per decade).
Arno Keppens, Serena Di Pede, Daan Hubert, Jean-Christopher Lambert, Pepijn Veefkind, Maarten Sneep, Johan De Haan, Mark ter Linden, Thierry Leblanc, Steven Compernolle, Tijl Verhoelst, José Granville, Oindrila Nath, Ann Mari Fjæraa, Ian Boyd, Sander Niemeijer, Roeland Van Malderen, Herman G. J. Smit, Valentin Duflot, Sophie Godin-Beekmann, Bryan J. Johnson, Wolfgang Steinbrecht, David W. Tarasick, Debra E. Kollonige, Ryan M. Stauffer, Anne M. Thompson, Angelika Dehn, and Claus Zehner
Atmos. Meas. Tech., 17, 3969–3993, https://doi.org/10.5194/amt-17-3969-2024, https://doi.org/10.5194/amt-17-3969-2024, 2024
Short summary
Short summary
The Sentinel-5P satellite operated by the European Space Agency has carried the TROPOspheric Monitoring Instrument (TROPOMI) around the Earth since October 2017. This mission also produces atmospheric ozone profile data which are described in detail for May 2018 to April 2023. Independent validation using ground-based reference measurements demonstrates that the operational ozone profile product mostly fully and at least partially complies with all mission requirements.
Benedikt Herkommer, Carlos Alberti, Paolo Castracane, Jia Chen, Angelika Dehn, Florian Dietrich, Nicholas M. Deutscher, Matthias Max Frey, Jochen Groß, Lawson Gillespie, Frank Hase, Isamu Morino, Nasrin Mostafavi Pak, Brittany Walker, and Debra Wunch
Atmos. Meas. Tech., 17, 3467–3494, https://doi.org/10.5194/amt-17-3467-2024, https://doi.org/10.5194/amt-17-3467-2024, 2024
Short summary
Short summary
The Total Carbon Column Observing Network is a network of ground-based Fourier transform infrared (FTIR) spectrometers used mainly for satellite validation. To ensure the highest-quality validation data, the network needs to be highly consistent. This is a major challenge, which so far is solved by site comparisons with airborne in situ measurements. In this work, we describe the use of a portable FTIR spectrometer as a travel standard for evaluating the consistency of TCCON sites.
Karen De Los Ríos, Paulina Ordoñez, Gabriele P. Stiller, Piera Raspollini, Marco Gai, Kaley A. Walker, Cristina Peña-Ortiz, and Luis Acosta
Atmos. Meas. Tech., 17, 3401–3418, https://doi.org/10.5194/amt-17-3401-2024, https://doi.org/10.5194/amt-17-3401-2024, 2024
Short summary
Short summary
This study examines newer versions of H2O and HDO retrievals from Envisat/MIPAS and SCISAT/ACE-FTS. Results reveal a better agreement in stratospheric H2O profiles than in HDO profiles. The H2O tape recorder signal is consistent across databases, but δD tape recorder composites show differences that impact the interpretation of water vapour transport. These findings enhance the need for intercomparisons to refine our insights.
Ming Luo, Helen M. Worden, Robert D. Field, Kostas Tsigaridis, and Gregory S. Elsaesser
Atmos. Meas. Tech., 17, 2611–2624, https://doi.org/10.5194/amt-17-2611-2024, https://doi.org/10.5194/amt-17-2611-2024, 2024
Short summary
Short summary
The TROPESS CrIS single-pixel CO profile retrievals are compared to the MOPITT CO products in steps of adjusting them to the common a priori assumptions. The two data sets are found to agree within 5 %. We also demonstrated and analyzed the proper steps in evaluating GISS ModelE CO simulations using satellite CO retrieval products for the western US wildfire events in September 2020.
Matthew S. Johnson, Alexei Rozanov, Mark Weber, Nora Mettig, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, Fernando Chouza, Timothy A. Berkoff, Guillaume Gronoff, Kevin B. Strawbridge, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Brandi McCarty, and Larry Twigg
Atmos. Meas. Tech., 17, 2559–2582, https://doi.org/10.5194/amt-17-2559-2024, https://doi.org/10.5194/amt-17-2559-2024, 2024
Short summary
Short summary
Monitoring tropospheric ozone (O3), a harmful pollutant negatively impacting human health, is primarily done using ground-based measurements and ozonesondes. However, these observation types lack the coverage to fully understand tropospheric O3. Satellites can retrieve tropospheric ozone with near-daily global coverage; however, they are known to have biases and errors. This study uses ground-based lidars to validate multiple satellites' ability to observe tropospheric O3.
Johan Mellqvist, Nathalia T. Vechi, Charlotte Scheutz, Marc Durif, Francois Gautier, John Johansson, Jerker Samuelsson, Brian Offerle, and Samuel Brohede
Atmos. Meas. Tech., 17, 2465–2479, https://doi.org/10.5194/amt-17-2465-2024, https://doi.org/10.5194/amt-17-2465-2024, 2024
Short summary
Short summary
The solar occultation flux method retrieves ammonia gas columns from the solar spectrum. Emissions are obtained by multiplying the integrated plume concentration by the wind speed profile. The methodology for uncertainty estimation was established considering an error budget with systematic and random components, resulting in an expanded uncertainty in the range of 20 % to 30 %. The method was validated in a controlled release, and its application was demonstrated in different farms.
Felicia Kolonjari, Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, David A. Plummer, Andreas Engel, Stephen A. Montzka, David E. Oram, Tanja Schuck, Gabriele P. Stiller, and Geoffrey C. Toon
Atmos. Meas. Tech., 17, 2429–2449, https://doi.org/10.5194/amt-17-2429-2024, https://doi.org/10.5194/amt-17-2429-2024, 2024
Short summary
Short summary
The Canadian Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) satellite instrument is currently providing the only vertically resolved chlorodifluoromethane (HCFC-22) measurements from space. This study assesses the most current ACE-FTS HCFC-22 data product in the upper troposphere and lower stratosphere, as well as modelled HCFC-22 from a 39-year run of the Canadian Middle Atmosphere Model (CMAM39) in the same region.
Emily Dowd, Alistair J. Manning, Bryn Orth-Lashley, Marianne Girard, James France, Rebecca E. Fisher, Dave Lowry, Mathias Lanoisellé, Joseph R. Pitt, Kieran M. Stanley, Simon O'Doherty, Dickon Young, Glen Thistlethwaite, Martyn P. Chipperfield, Emanuel Gloor, and Chris Wilson
Atmos. Meas. Tech., 17, 1599–1615, https://doi.org/10.5194/amt-17-1599-2024, https://doi.org/10.5194/amt-17-1599-2024, 2024
Short summary
Short summary
We provide the first validation of the satellite-derived emission estimates using surface-based mobile greenhouse gas surveys of an active gas leak detected near Cheltenham, UK. GHGSat’s emission estimates broadly agree with the surface-based mobile survey and steps were taken to fix the leak, highlighting the importance of satellite data in identifying emissions and helping to reduce our human impact on climate change.
Seunghwan Seo, Si-Wan Kim, Kyoung-Min Kim, Andreas Richter, Kezia Lange, John Philip Burrows, Junsung Park, Hyunkee Hong, Hanlim Lee, Ukkyo Jeong, and Jhoon Kim
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-33, https://doi.org/10.5194/amt-2024-33, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Over the Seoul Metropolitan Area, GEMS tropospheric NO2 vertical column densities (NO2 TropVCD) show distinct seasonal characteristics, including the absolute values and diurnal patterns. Also, varying a priori data have the substantial impacts on the GEMS NO2 TropVCD. The a priori data from different CTMs resulted in differences of up to 19.2 %. Notably, diurnal patterns of VCDs are similar for all datasets, although theri a priori data exhibit contrasting diurnal patterns.
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Prabir K. Patra, Shin-ichiro Nakaoka, Toshinobu Machida, Isamu Morino, André Butz, and Kei Shiomi
Atmos. Meas. Tech., 17, 1297–1316, https://doi.org/10.5194/amt-17-1297-2024, https://doi.org/10.5194/amt-17-1297-2024, 2024
Short summary
Short summary
Satellite CH4 observations with high accuracy are needed to understand changes in atmospheric CH4 concentrations. But over oceans, reference data are limited. We combine various ship and aircraft observations with the help of atmospheric chemistry models to derive observation-based column-averaged mixing ratios of CH4 (obs. XCH4). We discuss three different approaches and demonstrate the applicability of the new reference dataset for carbon cycle studies and satellite evaluation.
Brice Barret, Pierre Loicq, Eric Le Flochmoën, Yasmine Bennouna, Juliette Hadji-Lazaro, Daniel Hurtmans, and Bastien Sauvage
EGUsphere, https://doi.org/10.5194/egusphere-2024-30, https://doi.org/10.5194/egusphere-2024-30, 2024
Short summary
Short summary
Atmospheric profiles of carbon monoxide (CO) retrieved from the IASI spaceborne sensor with the SOFRID and FORLI algorithms are validated against airborne data from the IAGOS Infrastructure for 2008–2020. 8500 daily observations at 33 airports allow a comprehensive spatio-temporal evaluation of the IASI-CO products. They are globally underestimating IAGOS-CO with stronger bias in the mid-upper troposphere south of Bangkok for SOFRID and in the lower troposphere north of Philadelphia for FORLI.
Evan D. Sherwin, Sahar H. El Abbadi, Philippine M. Burdeau, Zhan Zhang, Zhenlin Chen, Jeffrey S. Rutherford, Yuanlei Chen, and Adam R. Brandt
Atmos. Meas. Tech., 17, 765–782, https://doi.org/10.5194/amt-17-765-2024, https://doi.org/10.5194/amt-17-765-2024, 2024
Short summary
Short summary
Countries and companies increasingly rely on a growing fleet of satellites to find large emissions of climate-warming methane, particularly from oil and natural gas systems across the globe. We independently assessed the performance of nine such systems by releasing controlled, undisclosed amounts of methane as satellites passed overhead. The tested systems produced reliable detection and quantification results, including the smallest-ever emission detected from space in such a test.
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024, https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Short summary
In this study, we describe and validate a new technique in which three radar tones are used to estimate the water vapor inside clouds and precipitation. This instrument flew on board NASA's P-3 aircraft during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign and the Synergies Of Active optical and Active microwave Remote Sensing Experiment (SOA2RSE) campaign.
Ouyang Liu, Zhengqiang Li, Yangyan Lin, Cheng Fan, Ying Zhang, Kaitao Li, Peng Zhang, Yuanyuan Wei, Tianzeng Chen, Jiantao Dong, and Gerrit de Leeuw
Atmos. Meas. Tech., 17, 377–395, https://doi.org/10.5194/amt-17-377-2024, https://doi.org/10.5194/amt-17-377-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NO2) is a trace gas which is important for atmospheric chemistry and may affect human health. To understand processes leading to harmful concentrations, it is important to monitor NO2 concentrations near the surface and higher up. To this end, a Pandora instrument has been installed in Beijing. An overview of the first year of data shows the large variability on diurnal to seasonal timescales and how this is affected by wind speed and direction and chemistry.
Karen E. Cady-Pereira, Xuehui Guo, Rui Wang, April B. Leytem, Chase Calkins, Elizabeth Berry, Kang Sun, Markus Müller, Armin Wisthaler, Vivienne H. Payne, Mark W. Shephard, Mark A. Zondlo, and Valentin Kantchev
Atmos. Meas. Tech., 17, 15–36, https://doi.org/10.5194/amt-17-15-2024, https://doi.org/10.5194/amt-17-15-2024, 2024
Short summary
Short summary
Ammonia is a significant precursor of PM2.5 particles and thus contributes to poor air quality in many regions. Furthermore, ammonia concentrations are rising due to the increase of large-scale, intensive agricultural activities. Here we evaluate satellite measurements of ammonia against aircraft and surface network data, and show that there are differences in magnitude, but the satellite data are spatially and temporally well correlated with the in situ data.
Diego Santaren, Janne Hakkarainen, Gerrit Kuhlmann, Erik Koene, Frédéric Chevallier, Iolanda Ialongo, Hannakaisa Lindqvist, Janne Nurmela, Johanna Tamminen, Laia Amoros, Dominik Brunner, and Grégoire Broquet
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-241, https://doi.org/10.5194/amt-2023-241, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study evaluates data-driven inversion methods for the estimate of CO2 emissions from local sources such as power plants and cities based on meteorological data and XCO2 and NO2 satellite images without atmospheric transport modeling. We assess and compare the performance of five different methods with simulations of one year of images from the future CO2M satellite mission over 15 power plants and the city of Berlin in Eastern Germany.
Alana K. Ayasse, Daniel Cusworth, Kelly O'Neill, Justin Fisk, Andrew K. Thorpe, and Riley Duren
Atmos. Meas. Tech., 16, 6065–6074, https://doi.org/10.5194/amt-16-6065-2023, https://doi.org/10.5194/amt-16-6065-2023, 2023
Short summary
Short summary
Methane is a powerful greenhouse gas, and a significant portion of methane comes from large individual plumes. Recently, airplane-mounted infrared technologies have proven very good at detecting and quantifying these plumes. In order to extract the methane signal from the infrared image, there are two widely used approaches. In this study, we assess the performance of both approaches using controlled-release experiments. We also examine the minimum detection limit of the infrared technology.
Apisada Chulakadabba, Maryann Sargent, Thomas Lauvaux, Joshua S. Benmergui, Jonathan E. Franklin, Christopher Chan Miller, Jonas S. Wilzewski, Sébastien Roche, Eamon Conway, Amir H. Souri, Kang Sun, Bingkun Luo, Jacob Hawthrone, Jenna Samra, Bruce C. Daube, Xiong Liu, Kelly Chance, Yang Li, Ritesh Gautam, Mark Omara, Jeff S. Rutherford, Evan D. Sherwin, Adam Brandt, and Steven C. Wofsy
Atmos. Meas. Tech., 16, 5771–5785, https://doi.org/10.5194/amt-16-5771-2023, https://doi.org/10.5194/amt-16-5771-2023, 2023
Short summary
Short summary
We show that MethaneAIR, a precursor to the MethaneSAT satellite, demonstrates accurate point source quantification during controlled release experiments and regional observations in 2021 and 2022. Results from our two independent quantification methods suggest the accuracy of our sensor and algorithms is better than 25 % for sources emitting 200 kg h−1 or more. Insights from these measurements help establish the capabilities of MethaneSAT and MethaneAIR.
Robin Björklund, Corinne Vigouroux, Peter Effertz, Omaira Garcia, Alex Geddes, James Hannigan, Koji Miyagawa, Michael Kotkamp, Bavo Langerock, Gerald Nedoluha, Ivan Ortega, Irina Petropavlovskikh, Deniz Poyraz, Richard Querel, John Robinson, Hisako Shiona, Dan Smale, Penny Smale, Roeland Van Malderen, and Martine De Mazière
EGUsphere, https://doi.org/10.5194/egusphere-2023-2668, https://doi.org/10.5194/egusphere-2023-2668, 2023
Short summary
Short summary
An intercomparison study is performed at Lauder between multiple ground-based measurements. We want to know why different trends have been observed in the stratosphere and. Also, the quality and relevance of tropospheric data sets need to be evaluated for trend studies. We analyze potential biases and drifts between Fourier transform infrared (FTIR) spectrometer, Dobson Umkehr, ozonesonde, lidar, microwave radiometer, Dobson total column ozone and Bentham ultraviolet double monochromator (UV2).
Kanghyun Baek, Jae Hwan Kim, Juseon Bak, David P. Haffner, Mina Kang, and Hyunkee Hong
Atmos. Meas. Tech., 16, 5461–5478, https://doi.org/10.5194/amt-16-5461-2023, https://doi.org/10.5194/amt-16-5461-2023, 2023
Short summary
Short summary
The GEMS mission was the first mission of the geostationary satellite constellation for hourly atmospheric composition monitoring. The GEMS ozone measurements were cross-compared to those of Pandora, OMPS, and TROPOMI satellite sensors and excellent agreement was found. GEMS has proven to be a powerful new instrument for monitoring and assessing the diurnal variation in atmospheric ozone. This experience can be used to advance research with future geostationary environmental satellite missions.
Tobias Christoph Valentin Werner Riess, Klaas Folkert Boersma, Ward Van Roy, Jos de Laat, Enrico Dammers, and Jasper van Vliet
Atmos. Meas. Tech., 16, 5287–5304, https://doi.org/10.5194/amt-16-5287-2023, https://doi.org/10.5194/amt-16-5287-2023, 2023
Short summary
Short summary
Satellite retrievals of trace gases require prior knowledge of the vertical distribution of the pollutant, which is usually obtained from models. Using aircraft-measured vertical NO2 profiles over the North Sea in summer 2021, we evaluate the Transport Model 5 profiles used in the TROPOMI NO2 retrieval. We conclude that driven by the low horizontal resolution and the overestimated vertical mixing, resulting NO2 columns are 20 % too low. This has important implications for emission estimates.
Thomas Trickl, Martin Adelwart, Dina Khordakova, Ludwig Ries, Christian Rolf, Michael Sprenger, Wolfgang Steinbrecht, and Hannes Vogelmann
Atmos. Meas. Tech., 16, 5145–5165, https://doi.org/10.5194/amt-16-5145-2023, https://doi.org/10.5194/amt-16-5145-2023, 2023
Short summary
Short summary
Tropospheric ozone have been measured for more than a century. Highly quantitative ozone measurements have been made at monitoring stations. However, deficits have been reported for vertical sounding systems. Here, we report a thorough intercomparison effort between a differential-absorption lidar system and two types of balloon-borne ozone sondes, also using ozone sensors at nearby mountain sites as references. The sondes agree very well with the lidar after offset corrections.
Rodriguez Yombo Phaka, Alexis Merlaud, Gaia Pinardi, Martina M. Friedrich, Michel Van Roozendael, Jean-François Müller, Trissevgeni Stavrakou, Isabelle De Smedt, François Hendrick, Ermioni Dimitropoulou, Richard Bopili Mbotia Lepiba, Edmond Phuku Phuati, Buenimio Lomami Djibi, Lars Jacobs, Caroline Fayt, Jean-Pierre Mbungu Tsumbu, and Emmanuel Mahieu
Atmos. Meas. Tech., 16, 5029–5050, https://doi.org/10.5194/amt-16-5029-2023, https://doi.org/10.5194/amt-16-5029-2023, 2023
Short summary
Short summary
We present air quality measurements in Kinshasa, Democratic Republic of the Congo, performed with a newly developed instrument which was installed on a roof of the University of Kinshasa in November 2019. The instrument records spectra of the scattered sunlight, from which we derive the abundances of nitrogen dioxide and formaldehyde, two important pollutants. We compare our ground-based measurements with those of the TROPOspheric Monitoring Instrument (TROPOMI).
Jay Herman, Jerald Ziemke, and Richard McPeters
Atmos. Meas. Tech., 16, 4693–4707, https://doi.org/10.5194/amt-16-4693-2023, https://doi.org/10.5194/amt-16-4693-2023, 2023
Short summary
Short summary
Fourier series multivariate linear regression trends (% per decade) in ozone were estimated from the Merged Ozone Data Set (MOD) from 1979 to 2021 in two different regimes, from 1979 to TA (the date when ozone stopped decreasing) and TA to 2021. The derived TA is a latitude-dependent date, ranging from 1994 to 1998. TA(θ) is a marker for photochemistry dynamics models attempting to represent ozone change over the past 42 years.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
Tim A. van Kempen, Tim J. Rotmans, Richard M. van Hees, Carol Bruegge, Dejian Fu, Ruud Hoogeveen, Thomas J. Pongetti, Robert Rosenberg, and Ilse Aben
Atmos. Meas. Tech., 16, 4507–4527, https://doi.org/10.5194/amt-16-4507-2023, https://doi.org/10.5194/amt-16-4507-2023, 2023
Short summary
Short summary
Validation of satellite measurements is essential for providing reliable and consistent products. In this paper, a validation method for TROPOMI-SWIR (Tropospheric Measurement Instrument in the short-wavelength infrared) is explored. TROPOMI-SWIR has been shown to be exceptionally stable, a necessity to explore the methodology. Railroad Valley, Nevada, is a prime location to perform the necessary measurements to validate the satellite measurements of TROPOMI-SWIR.
Serin Kim, Daewon Kim, Hyunkee Hong, Lim-Seok Chang, Hanlim Lee, Deok-Rae Kim, Donghee Kim, Jeong-Ah Yu, Dongwon Lee, Ukkyo Jeong, Chang-Kuen Song, Sang-Woo Kim, Sang Seo Park, Jhoon Kim, Thomas F. Hanisco, Junsung Park, Wonei Choi, and Kwangyul Lee
Atmos. Meas. Tech., 16, 3959–3972, https://doi.org/10.5194/amt-16-3959-2023, https://doi.org/10.5194/amt-16-3959-2023, 2023
Short summary
Short summary
A first evaluation of the Geostationary Environmental Monitoring Spectrometer (GEMS) NO2 was carried out via comparison with the NO2 data obtained from the ground-based Pandora direct-sun measurements at four sites in Seosan, Republic of Korea. Comparisons between GEMS NO2 and Pandora NO2 were performed according to GEMS cloud fraction. GEMS NO2 showed good agreement with that of Pandora NO2 under less cloudy conditions.
Nicholas Balasus, Daniel J. Jacob, Alba Lorente, Joannes D. Maasakkers, Robert J. Parker, Hartmut Boesch, Zichong Chen, Makoto M. Kelp, Hannah Nesser, and Daniel J. Varon
Atmos. Meas. Tech., 16, 3787–3807, https://doi.org/10.5194/amt-16-3787-2023, https://doi.org/10.5194/amt-16-3787-2023, 2023
Short summary
Short summary
We use machine learning to remove biases in TROPOMI satellite observations of atmospheric methane, with GOSAT observations serving as a reference. We find that the TROPOMI biases relative to GOSAT are related to the presence of aerosols and clouds, the surface brightness, and the specific detector that makes the observation aboard TROPOMI. The resulting blended TROPOMI+GOSAT product is more reliable for quantifying methane emissions.
Thomas E. Taylor, Christopher W. O'Dell, David Baker, Carol Bruegge, Albert Chang, Lars Chapsky, Abhishek Chatterjee, Cecilia Cheng, Frédéric Chevallier, David Crisp, Lan Dang, Brian Drouin, Annmarie Eldering, Liang Feng, Brendan Fisher, Dejian Fu, Michael Gunson, Vance Haemmerle, Graziela R. Keller, Matthäus Kiel, Le Kuai, Thomas Kurosu, Alyn Lambert, Joshua Laughner, Richard Lee, Junjie Liu, Lucas Mandrake, Yuliya Marchetti, Gregory McGarragh, Aronne Merrelli, Robert R. Nelson, Greg Osterman, Fabiano Oyafuso, Paul I. Palmer, Vivienne H. Payne, Robert Rosenberg, Peter Somkuti, Gary Spiers, Cathy To, Brad Weir, Paul O. Wennberg, Shanshan Yu, and Jia Zong
Atmos. Meas. Tech., 16, 3173–3209, https://doi.org/10.5194/amt-16-3173-2023, https://doi.org/10.5194/amt-16-3173-2023, 2023
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 and 3 (OCO-2 and OCO-3, respectively) provide complementary spatiotemporal coverage from a sun-synchronous and precession orbit, respectively. Estimates of total column carbon dioxide (XCO2) derived from the two sensors using the same retrieval algorithm show broad consistency over a 2.5-year overlapping time record. This suggests that data from the two satellites may be used together for scientific analysis.
Lena Katharina Jänicke, Rene Preusker, Marco Celesti, Marin Tudoroiu, Jürgen Fischer, Dirk Schüttemeyer, and Matthias Drusch
Atmos. Meas. Tech., 16, 3101–3121, https://doi.org/10.5194/amt-16-3101-2023, https://doi.org/10.5194/amt-16-3101-2023, 2023
Short summary
Short summary
To compare two top-of-atmosphere radiances measured by instruments with different spectral characteristics, a transfer function has been developed. It is applied to a tandem data set of Sentinel-3A and B, for which OLCI-B mimicked the ESA’s eighth Earth Explorer FLEX. We found that OLCI-A measured radiances about 2 % brighter than OLCI-FLEX. Only at larger wavelengths were OLCI-A measurements about 5 % darker. The method is thus successful, being sensitive to calibration and processing issues.
Luis F. Millán, Gloria L. Manney, Harald Boenisch, Michaela I. Hegglin, Peter Hoor, Daniel Kunkel, Thierry Leblanc, Irina Petropavlovskikh, Kaley Walker, Krzysztof Wargan, and Andreas Zahn
Atmos. Meas. Tech., 16, 2957–2988, https://doi.org/10.5194/amt-16-2957-2023, https://doi.org/10.5194/amt-16-2957-2023, 2023
Short summary
Short summary
The determination of atmospheric composition trends in the upper troposphere and lower stratosphere (UTLS) is still highly uncertain. We present the creation of dynamical diagnostics to map several ozone datasets (ozonesondes, lidars, aircraft, and satellite measurements) in geophysically based coordinate systems. The diagnostics can also be used to analyze other greenhouse gases relevant to surface climate and UTLS chemistry.
Zhihua Zhang, Jianguo Niu, Lawrence E. Flynn, Eric Beach, and Trevor Beck
Atmos. Meas. Tech., 16, 2919–2941, https://doi.org/10.5194/amt-16-2919-2023, https://doi.org/10.5194/amt-16-2919-2023, 2023
Short summary
Short summary
This study mainly focused on addressing stability and improvement when using a broadband approach, establishing soft-calibration adjustments for both OMPS S-NPP and N20, analyzing error biases based on multi-sensor bias correction, and comparing total column ozone and aerosol index retrievals from NOAA OMPS with those from other products.
Matthew S. Johnson, Amir H. Souri, Sajeev Philip, Rajesh Kumar, Aaron Naeger, Jeffrey Geddes, Laura Judd, Scott Janz, Heesung Chong, and John Sullivan
Atmos. Meas. Tech., 16, 2431–2454, https://doi.org/10.5194/amt-16-2431-2023, https://doi.org/10.5194/amt-16-2431-2023, 2023
Short summary
Short summary
Satellites provide vital information for studying the processes controlling ozone formation. Based on the abundance of particular gases in the atmosphere, ozone formation is sensitive to specific human-induced and natural emission sources. However, errors and biases in satellite retrievals hinder this data source’s application for studying ozone formation sensitivity. We conducted a thorough statistical evaluation of two commonly applied satellites for investigating ozone formation sensitivity.
Kezia Lange, Andreas Richter, Anja Schönhardt, Andreas C. Meier, Tim Bösch, André Seyler, Kai Krause, Lisa K. Behrens, Folkard Wittrock, Alexis Merlaud, Frederik Tack, Caroline Fayt, Martina M. Friedrich, Ermioni Dimitropoulou, Michel Van Roozendael, Vinod Kumar, Sebastian Donner, Steffen Dörner, Bianca Lauster, Maria Razi, Christian Borger, Katharina Uhlmannsiek, Thomas Wagner, Thomas Ruhtz, Henk Eskes, Birger Bohn, Daniel Santana Diaz, Nader Abuhassan, Dirk Schüttemeyer, and John P. Burrows
Atmos. Meas. Tech., 16, 1357–1389, https://doi.org/10.5194/amt-16-1357-2023, https://doi.org/10.5194/amt-16-1357-2023, 2023
Short summary
Short summary
We present airborne imaging DOAS and ground-based stationary and car DOAS measurements conducted during the S5P-VAL-DE-Ruhr campaign in the Rhine-Ruhr region. The measurements are used to validate spaceborne NO2 data products from the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI). Auxiliary data of the TROPOMI NO2 retrieval, such as spatially higher resolved a priori NO2 vertical profiles, surface reflectivity, and cloud treatment are investigated to evaluate their impact.
Yolanda Maria Lemes, Christoph Häni, Jesper Nørlem Kamp, and Anders Feilberg
Atmos. Meas. Tech., 16, 1295–1309, https://doi.org/10.5194/amt-16-1295-2023, https://doi.org/10.5194/amt-16-1295-2023, 2023
Short summary
Short summary
The implementation of a new method, line-averaged concentration measurement with a closed-path analyzer, will enable the measurement of fluxes of multiple gases from different types of sources and will evaluate the effects of mitigation strategies on emissions. In addition, this method allows for continuous online measurements that resolve temporal variation in ammonia emissions and the peak emissions of methane.
Prajjwal Rawat, Manish Naja, Evan Fishbein, Pradeep K. Thapliyal, Rajesh Kumar, Piyush Bhardwaj, Aditya Jaiswal, Sugriva N. Tiwari, Sethuraman Venkataramani, and Shyam Lal
Atmos. Meas. Tech., 16, 889–909, https://doi.org/10.5194/amt-16-889-2023, https://doi.org/10.5194/amt-16-889-2023, 2023
Short summary
Short summary
Satellite-based ozone observations have gained importance due to their global coverage. However, satellite-retrieved products are indirect and need to be validated, particularly over mountains. Ozonesondes launched from a Himalayan site are used to assess the Atmospheric Infrared Sounder (AIRS) ozone retrieval. AIRS is shown to overestimate ozone in the upper troposphere and lower stratosphere, while the differences from ozonesondes are more minor in the middle troposphere and stratosphere.
Murali Natarajan, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 16, 75–87, https://doi.org/10.5194/amt-16-75-2023, https://doi.org/10.5194/amt-16-75-2023, 2023
Short summary
Short summary
Photochemically induced changes in mesospheric O3 concentration at twilight can cause asymmetry in the distribution along the line of sight of solar occultation observations that must be considered in the retrieval algorithm. Correction factors developed from diurnal photochemical model simulations were used to modify the archived SAGE III/ISS mesospheric O3 concentrations. For June 2021 the bias caused by the neglect of diurnal variations is over 30% at 64 km altitude and low latitudes.
Javier Gorroño, Daniel J. Varon, Itziar Irakulis-Loitxate, and Luis Guanter
Atmos. Meas. Tech., 16, 89–107, https://doi.org/10.5194/amt-16-89-2023, https://doi.org/10.5194/amt-16-89-2023, 2023
Short summary
Short summary
We present a methane flux rate retrieval methodology using the Sentinel-2 mission, validating the algorithm for different scenes and plumes. The detection limit is 1000–2000 kg h−1 for homogeneous scenes and temporally invariant surfaces and above 5000 kg h−1 for heterogeneous ones. Dominant quantification errors are wind-related or plume mask-related. For heterogeneous scenes, the surface structure underlying the methane plume can become a dominant source of uncertainty.
Katerina Garane, Ka Lok Chan, Maria-Elissavet Koukouli, Diego Loyola, and Dimitris Balis
Atmos. Meas. Tech., 16, 57–74, https://doi.org/10.5194/amt-16-57-2023, https://doi.org/10.5194/amt-16-57-2023, 2023
Short summary
Short summary
In this work, 2.5 years of TROPOMI/S5P Total Column Water Vapor (TCWV) observations retrieved from the blue wavelength band are validated against co-located precipitable water measurements from NASA AERONET, which uses Cimel Sun photometers globally. Overall, the TCWV product agrees well on a global scale with the ground-based dataset (Pearson correl. coefficient 0.909) and has a mean relative bias of −2.7 ± 4.9 % with respect to the AERONET observations for moderate albedo and cloudiness.
Lei Shi, Carl J. Schreck III, Viju O. John, Eui-Seok Chung, Theresa Lang, Stefan A. Buehler, and Brian J. Soden
Atmos. Meas. Tech., 15, 6949–6963, https://doi.org/10.5194/amt-15-6949-2022, https://doi.org/10.5194/amt-15-6949-2022, 2022
Short summary
Short summary
Four upper tropospheric humidity (UTH) datasets derived from satellite microwave and infrared sounders are evaluated to assess their consistency as part of the activities for the Global Energy and Water Exchanges (GEWEX) water vapor assessment project. The study shows that the four datasets are consistent in the interannual temporal and spatial variability of the tropics. However, differences are found in the magnitudes of the anomalies and in the changing rates during the common period.
Cited articles
Eckert, E., von Clarmann, T., Kiefer, M., Stiller, G. P., Lossow, S., Glatthor, N., Degenstein, D. A., Froidevaux, L., Godin-Beekmann, S.,
Leblanc, T., McDermid, S., Pastel, M., Steinbrecht, W., Swart, D. P. J., Walker, K. A., and Bernath, P. F.: Drift-corrected trends and
periodic variations in MIPAS IMK/IAA ozone measurements, Atmos. Chem. Phys., 14, 257–2589, https://doi.org/10.5194/acp-14-2571-2014, 2014. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Flaud, J.-M., Piccolo, C., Carli, B., Perrin, A., Coudert, L. H., Teffo, J. L., and Brown L. R.:
Molecular line parameters for the MIPAS (Michelson Interferometer for Passive Atmospheric
Sounding) experiment, Atmos. Ocean. Opt., 16, 172–182, 2003. a
Froidevaux, L., Jiang, Y. B., Lambert, A., Livesey, N. J., Read, W. G.,
Waters, J. W., Browell, E. V., Avery, J. W. H. M. A., McGee, T. J.,
Twigg, L. W., Sumnicht, G. K., Jucks, K. W., Margitan, J. J., Sen, B.,
Stachnik, R. A., Toon, G. C., Bernath, P. F., Boone, C. D., Walker, K. A.,
Filipiak, M. J., Harwood, R. S., Fuller, R. A., Manney, G. L.,
Schwartz, M. J., Daffer, W. H., Drouin, B. J., Cofield, R. E., Cuddy, D. T.,
Jarnot, R. F., Knosp, B. W., Perun, V. S., Snyder, W. V., Stek, P. C.,
Thurstans, R. P., and Wagner, P. A.: Validation of Aura Microwave Limb
Sounder stratospheric ozone measurements, J. Geophys. Res., 113, D15S20,
https://doi.org/10.1029/2007JD008771, 2008. a
García-Comas, M., Funke, B., Gardini, A., López-Puertas, M., Jurado-Navarro, A., von Clarmann, T., Stiller, G., Kiefer, M., Boone, C. D.,
Leblanc, T., Marshall, B. T., Schwartz, M. J., and Sheese, P. E.: MIPAS temperature from the stratosphere to the lower thermosphere:
Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements, Atmos. Meas. Tech., 7, 3633–3651, https://doi.org/10.5194/amt-7-3633-2014, 2014. a, b, c
Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Cámara, Á, and Murphy, D.:
Modifications of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: Motivation
and results, J. Geophys. Res.-Atmos.,
https://doi.org/10.1175/JAS-D-16-0104.1, 2016. a
Glatthor, N., von Clarmann, T., Stiller, G. P., Kiefer, M., Laeng, A., Dinelli, B. M., Wetzel, G., and Orphal, J.: Differences in ozone
retrieval in MIPAS channels A and AB: a spectroscopic issue, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-49, in review,
2018. a
Haenel, F. J., Stiller, G. P., von Clarmann, T., Funke, B., Eckert, E., Glatthor, N., Grabowski, U., Kellmann, S., Kiefer, M., Linden, A.,
and Reddmann, T.: Reassessment of MIPAS age of air trends and variability, Atmos. Chem. Phys., 15, 13161–13176, https://doi.org/10.5194/acp-15-13161-2015, 2015. a
Hedin, A. E.: Extension of the MSIS thermosphere model into the middle and
lower altmosphere, J. Geophys. Res., 96, 1159–1172, 1991. a
Hubert, D., Lambert, J.-C., Verhoelst, T., Granville, J., Keppens, A., Baray, J.-L., Bourassa, A. E., Cortesi, U., Degenstein, D. A., Froidevaux, L.,
Godin-Beekmann, S., Hoppel, K. W., Johnson, B. J., Kyrölä, E., Leblanc, T., Lichtenberg, G., Marchand, M., McElroy, C. T., Murtagh, D., Nakane, H.,
Portafaix, T., Querel, R., Russell III, J. M., Salvador, J., Smit, H. G. J., Stebel, K., Steinbrecht, W., Strawbridge, K. B., Stübi, R.,
Swart, D. P. J., Taha, G., Tarasick, D. W., Thompson, A. M., Urban, J., van Gijsel, J. A. E., Van Malderen, R., von der Gathen, P.,
Walker, K. A., Wolfram, E., and Zawodny, J. M.: Ground-based assessment of the bias and long-term stability of 14 limb and occultation
ozone profile data records, Atmos. Meas. Tech., 9, 2497–2534, https://doi.org/10.5194/amt-9-2497-2016, 2016. a, b, c, d, e
Hubert, D., Lambert, J.-C., Verhoelst, T., and Keppens, A.:
II: Search for time-dependences in comparisons of ground-based and limb profile ozone records,
Poster on LOTUS Workshop in Paris, 12–13 March, 2017. a
IMK–ASF - KIT: MIPAS ENVISAT Data, available at: https://www.imk-asf.kit.edu/english/308.php, last access: 8 August 2018.
Kiefer, M., Aubertin, G., Birk, M., de Laurentis, M., Eckert, E., Kleinert, A., Perron, G., and Wagner, G.:
Impact of Improved Corrections for MIPAS Detector Non-Linearity, Atmospheric Composition Validation and
Evolution, Frascati, 13–15 March 2013, Abstract Book, p. 38, 2013. a
Kleinert, A., Aubertin, G., Perron, G., Birk, M., Wagner, G., Hase, F., Nett, H., and Poulin, R.: MIPAS Level 1B algorithms overview:
operational processing and characterization, Atmos. Chem. Phys., 7, 1395–1406, https://doi.org/10.5194/acp-7-1395-2007, 2007. a
Kurylo, M. and Zander, R.: The NDSC – Its status after ten years of
operation, In Proceedings of the Quadrennial Ozone
Symposium 2000, Hokkaido Univ., Sapporo, Japan, edited by: NASDA, 167–168, 2001. a
Laeng, A., Grabowski, U., von Clarmann, T., Stiller, G., Glatthor, N., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Lossow, S., Sofieva, V.,
Petropavlovskikh, I., Hubert, D., Bathgate, T., Bernath, P., Boone, C. D., Clerbaux, C., Coheur, P., Damadeo, R., Degenstein, D., Frith, S.,
Froidevaux, L., Gille, J., Hoppel, K., McHugh, M., Kasai, Y., Lumpe, J., Rahpoe, N., Toon, G., Sano, T., Suzuki, M., Tamminen, J., Urban, J.,
Walker, K., Weber, M., and Zawodny, J.: Validation of MIPAS IMK/IAA V5R_O3_224 ozone profiles, Atmos. Meas. Tech., 7, 3971–3987, https://doi.org/10.5194/amt-7-3971-2014, 2014. a
Laeng, A., Hubert, D., Verhoelst, T., von Clarmann, T., Dinelli, B. M., Dudhia,
A., Raspollini, P., Stiller, G., Grabowski, U., Keppens, A., Kiefer, M.,
Sofieva, V., Froidevaux, L., Walker, K. A., Lambert, J.-C., and Zehner, C.:
The Ozone Climate Change Initiative: Comparison of four Level-2
Processors for the Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS), Remote Sens. Environ., 162, 316–343,
https://doi.org/10.1016/j.rse.2014.12.013, 2015. a
Lambert, J.-C., Van Roozendael, M., De Mazière, M., Simon, P., Pommereau, J.-P., Goutail, F.,
Sarkissian, A., and Gleason, J.:
Investigation of pole-to-pole performances of
spaceborne atmospheric chemistry sensors with the NDSC, Atmos. Sci., 56, 176–193, 1999. a
Levenberg, K.: A method for the solution of certain non–linear problems in least squares, Quart. Appl. Math., 2, 164–168, 1944. a
López-Puertas, M., Funke, B., Jurado-Navarro, A. A., García-Comas, M., Gardini, A.,
Boone, C. D., Rezac, L, and Garcia, R.: Validation of the MIPAS CO2 volume mixing ratio in the mesosphere and lower thermosphere
and comparison with WACCM simulations,
J. Geophys. Res., 122, 1–22, 2017. a
López-Puertas, M., García-Comas, M., Funke, B., Gardini, A., Stiller, G. P., von Clarmann, T., Glatthor, N., Laeng, A., Kaufmann, M.,
Sofieva, V. F., Froidevaux, L., Walker, K. A., and Shiotani, M.: MIPAS observations of ozone in the middle atmosphere, Atmos. Meas. Tech.,
11, 2187–2212, https://doi.org/10.5194/amt-11-2187-2018, 2018. a
Marquardt, D. W.: An algorithm for least–squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math., 11, 431–441, 1963. a
Marsh, D. R.: Chemical-dynamical coupling in the Mesosphere and Lower Thermosphere,
Aeronomy of the Earth's Atmosphere and Ionosphere, IAGA Special
Sopron Book Ser., vol. 2, edited by: Abdu, M., Pancheva, D., and Bhattacharyya, A., 1st ed.,
370 pp., ISBN: 978-94-007-0325-4, Springer, Dordrecht, 2011. a
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and Polvani, L. M.:
Climate change from 1850 to 2005 simulated in CESM1(WACCM), J. Climate, 26,
https://doi.org/10.1175/JCLI-D-12-00558.1, 2013. a
Neely III, R. R., English, J. M., Toon, O. B., Solomon, S., Mills, M., and Thayer, J. P.:
Implications of extinction due to meteoritic smoke in the upper stratosphere,
Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL049865, 2011. a
Plieninger, J., von Clarmann, T., Stiller, G. P., Grabowski, U., Glatthor, N., Kellmann, S., Linden, A., Haenel, F., Kiefer, M., Höpfner, M.,
Laeng, A., and Lossow, S.: Methane and nitrous oxide retrievals from MIPAS-ENVISAT, Atmos. Meas. Tech., 8, 4657–4670, https://doi.org/10.5194/amt-8-4657-2015, 2015. a
Sofieva, V. F., Rahpoe, N., Tamminen, J., Kyrölä, E., Kalakoski, N., Weber, M., Rozanov, A., von Savigny, C., Laeng, A., von Clarmann, T.,
Stiller, G., Lossow, S., Degenstein, D., Bourassa, A., Adams, C., Roth, C., Lloyd, N., Bernath, P., Hargreaves, R. J., Urban, J., Murtagh, D.,
Hauchecorne, A., Dalaudier, F., van Roozendael, M., Kalb, N., and Zehner, C.: Harmonized dataset of ozone profiles from satellite limb and
occultation measurements, Earth Syst. Sci. Data, 5, 349–363, https://doi.org/10.5194/essd-5-349-2013, 2013. a
Sofieva, V. F., Kyrölä, E., Laine, M., Tamminen, J., Degenstein, D., Bourassa, A., Roth, C., Zawada, D., Weber, M., Rozanov, A., Rahpoe, N.,
Stiller, G., Laeng, A., von Clarmann, T., Walker, K. A., Sheese, P., Hubert, D., van Roozendael, M., Zehner, C., Damadeo, R., Zawodny, J.,
Kramarova, N., and Bhartia, P. K.: Merged SAGE II, Ozone_cci and OMPS ozone profile dataset and evaluation of ozone trends in the stratosphere,
Atmos. Chem. Phys., 17, 12533–12552, https://doi.org/10.5194/acp-17-12533-2017, 2017. a
Stiller, G. P. (Ed.): The Karlsruhe Optimized and Precise Radiative Transfer Algorithm (KOPRA),
Wiss. Ber. FZKA 6487, Forschungszentrum, Karlsruhe, Germany, 2000. a
Thompson, A. M., Miller, S. K., Tilmes, S., Kollonige, D. W., Witte, J. C., Oltmans, S. J., Johnson, B. J., Fujiwara, M., Schmidlin, F. J., Coetzee, G. J. R.,
Komala N., Maata, M., Maznorizan bt Mohamad, Nguyo, J., Mutai, C., Ogino, S.-Y., Raimundo Da Silva, F., Paes Leme, N. M., Posny, F., Scheele, R.,
Selkirk, H. B., Shiotani, M., Stübi, R., Levrat, G., Calpini, B., Thouret, V., Tsuruta, H., Canossa, J. V., Vömel, H.,
Yonemura, S., Diaz, J. A., Tan Thanh, N. T., and Thuy Ha, H. T.: Southern Hemisphere Additional Ozonesondes (SHADOZ)
ozone climatology (2005–2009): Tropospheric and tropical tropopause layer
(TTL) profiles with comparisons to OMI-based ozone products, J. Geophys. Res., 117, D23301, https://doi.org/10.1029/2011JD016911, 2012. a
von Clarmann, T., Glatthor, N., Grabowski, U., Höpfner, M., Kellmann, S.,
Kiefer, M., Linden, A., Mengistu Tsidu, G., Milz, M., Steck, T., Stiller,
G. P., Wang, D. Y., Fischer, H., Funke, B., Gil-López, S., and
López-Puertas, M.: Retrieval of temperature and tangent altitude pointing
from limb emission spectra recorded from space by the Michelson
Interferometer for Passive Atmospheric Sounding (MIPAS), J.
Geophys. Res., 108, 4736, https://doi.org/10.1029/2003JD003602, 2003.
a, b, c
von Clarmann, T., Höpfner, M., Kellmann, S., Linden, A., Chauhan, S., Funke, B., Grabowski, U., Glatthor, N., Kiefer, M., Schieferdecker, T.,
Stiller, G. P., and Versick, S.: Retrieval of temperature, H2O, O3, HNO3, CH4, N2O,
ClONO2 and ClO from MIPAS reduced resolution nominal mode
limb emission measurements, Atmos. Meas. Tech., 2, 159–175, https://doi.org/10.5194/amt-2-159-2009, 2009. a, b
von Clarmann, T., Stiller, G., Grabowski, U., Eckert, E., and Orphal, J.: Technical Note: Trend estimation from irregularly sampled,
correlated data, Atmos. Chem. Phys., 10, 6737–6747, https://doi.org/10.5194/acp-10-6737-2010, 2010. a
Wagner, G. and Birk, M.: Improvement of DLR detector non-linearity characterization for MIPAS/Envisat, Support to MIPAS
Phase E activities Technical Note, issue 1A, 29 June 2005. a
Short summary
MIPAS was an IR limb emission spectrometer on the Envisat platform. From 2002 to 2012, it performed pole-to-pole measurements of ozone during day and night. ESA recently released the new version 7 of Level 1 MIPAS spectra, which is expected to reduce the long-term drift of the MIPAS Level 2 data. We evaluate the long-term stability of ozone Level 2 data from the KIT IMK processor. Our results indicate that MIPAS data are now even more suited for trend studies, alone or as part of merged data.
MIPAS was an IR limb emission spectrometer on the Envisat platform. From 2002 to 2012, it...
Special issue