Articles | Volume 13, issue 11
Atmos. Meas. Tech., 13, 6113–6140, 2020
https://doi.org/10.5194/amt-13-6113-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: TROPOMI on Sentinel-5 Precursor: first year in operation (AMT/ACP...
Research article
17 Nov 2020
Research article
| 17 Nov 2020
Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound
Laura M. Judd et al.
Related authors
Daniel Goldberg, Monica Harkey, Benjamin de Foy, Laura Judd, Jeremiah Johnson, Greg Yarwood, and Tracey Holloway
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-299, https://doi.org/10.5194/acp-2022-299, 2022
Preprint under review for ACP
Short summary
Short summary
We offer recommendations for TROPOMI vs. model evaluations, using Texas as a case study. We find that TROPOMI NO2 version 2.3.1 algorithm increases NO2 +17 % in urban areas compared to version 1.3. Lightning NOx is important to account for and can contribute up 24 % of the column NO2 over the Gulf of Mexico and 8 % in Texas urban areas. Urban NOx emissions agree with TROPOMI NO2 version 2.3.1 to within 20 % in most circumstances. Near large power plants, the satellite appears to underrepresent NO2.
Siqi Ma, Daniel Tong, Lok Lamsal, Julian Wang, Xuelei Zhang, Youhua Tang, Rick Saylor, Tianfeng Chai, Pius Lee, Patrick Campbell, Barry Baker, Shobha Kondragunta, Laura Judd, Timothy A. Berkoff, Scott J. Janz, and Ivanka Stajner
Atmos. Chem. Phys., 21, 16531–16553, https://doi.org/10.5194/acp-21-16531-2021, https://doi.org/10.5194/acp-21-16531-2021, 2021
Short summary
Short summary
Predicting high ozone gets more challenging as urban emissions decrease. How can different techniques be used to foretell the quality of air to better protect human health? We tested four techniques with the CMAQ model against observations during a field campaign over New York City. The new system proves to better predict the magnitude and timing of high ozone. These approaches can be extended to other regions to improve the predictability of high-O3 episodes in contemporary urban environments.
Wenfu Tang, David P. Edwards, Louisa K. Emmons, Helen M. Worden, Laura M. Judd, Lok N. Lamsal, Jassim A. Al-Saadi, Scott J. Janz, James H. Crawford, Merritt N. Deeter, Gabriele Pfister, Rebecca R. Buchholz, Benjamin Gaubert, and Caroline R. Nowlan
Atmos. Meas. Tech., 14, 4639–4655, https://doi.org/10.5194/amt-14-4639-2021, https://doi.org/10.5194/amt-14-4639-2021, 2021
Short summary
Short summary
We use high-resolution airborne mapping spectrometer measurements to assess sub-grid variability within satellite pixels over urban regions. The sub-grid variability within satellite pixels increases with increasing satellite pixel sizes. Temporal variability within satellite pixels decreases with increasing satellite pixel sizes. This work is particularly relevant and useful for future satellite design, satellite data interpretation, and point-grid data comparisons.
Laura M. Judd, Jassim A. Al-Saadi, Scott J. Janz, Matthew G. Kowalewski, R. Bradley Pierce, James J. Szykman, Lukas C. Valin, Robert Swap, Alexander Cede, Moritz Mueller, Martin Tiefengraber, Nader Abuhassan, and David Williams
Atmos. Meas. Tech., 12, 6091–6111, https://doi.org/10.5194/amt-12-6091-2019, https://doi.org/10.5194/amt-12-6091-2019, 2019
Short summary
Short summary
In 2017, an airborne mapping spectrometer (GeoTASO) was used to observe high-resolution column densities of nitrogen dioxide (NO2) over the western shore of Lake Michigan and the Los Angeles Basin. These data were used to simulate the spatial resolution of current and future satellite NO2 retrievals to evaluate the impact of pixel size on comparisons to ground-based observations in urban areas. As spatial resolution improves, the sensitivity to more heterogeneously polluted scenes increases.
Caroline R. Nowlan, Xiong Liu, Scott J. Janz, Matthew G. Kowalewski, Kelly Chance, Melanie B. Follette-Cook, Alan Fried, Gonzalo González Abad, Jay R. Herman, Laura M. Judd, Hyeong-Ahn Kwon, Christopher P. Loughner, Kenneth E. Pickering, Dirk Richter, Elena Spinei, James Walega, Petter Weibring, and Andrew J. Weinheimer
Atmos. Meas. Tech., 11, 5941–5964, https://doi.org/10.5194/amt-11-5941-2018, https://doi.org/10.5194/amt-11-5941-2018, 2018
Short summary
Short summary
The GEO-CAPE Airborne Simulator (GCAS) was developed in support of future air quality and ocean color geostationary satellite missions. GCAS flew in its first field campaign on NASA's King Air B-200 aircraft during DISCOVER-AQ Texas in 2013. In this paper, we determine nitrogen dioxide and formaldehyde columns over Houston from the GCAS air quality sensor and compare those results with measurements made from ground-based Pandora spectrometers and in situ airborne instruments.
Nora Mettig, Mark Weber, Alexei Rozanov, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Ryan M. Stauffer, Thierry Leblanc, Gerard Ancellet, Michael J. Newchurch, Shi Kuang, Rigel Kivi, Matthew B. Tully, Roeland Van Malderen, Ankie Piters, Bogumil Kois, René Stübi, and Pavla Skrivankova
Atmos. Meas. Tech., 15, 2955–2978, https://doi.org/10.5194/amt-15-2955-2022, https://doi.org/10.5194/amt-15-2955-2022, 2022
Short summary
Short summary
Vertical ozone profiles from combined spectral measurements in the UV and IR spectral ranges were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP. The vertical resolution and accuracy of the ozone profiles are improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The advancement of our TOPAS algorithm for combined measurements is required because in the UV-only retrieval the vertical resolution in the troposphere is very limited.
Patricia A. Cleary, Gijs de Boer, Joseph P. Hupy, Steven Borenstein, Jonathan Hamilton, Ben Kies, Dale Lawrence, R. Bradley Pierce, Joe Tirado, Aidan Voon, and Timothy Wagner
Earth Syst. Sci. Data, 14, 2129–2145, https://doi.org/10.5194/essd-14-2129-2022, https://doi.org/10.5194/essd-14-2129-2022, 2022
Short summary
Short summary
A field campaign, WiscoDISCO-21, was conducted at the shoreline of Lake Michigan to better understand the role of marine air in pollutants. Two uncrewed aircraft systems were equipped with sensors for meteorological variables and ozone. A Doppler lidar instrument at a ground station measured horizontal and vertical winds. The overlap of observations from multiple instruments allowed for a unique mapping of the meteorology and pollutants as a marine air mass moved over land.
Xin Zhang, Yan Yin, Ronald van der A, Henk Eskes, Jos van Geffen, Yunyao Li, Xiang Kuang, Jeff L. Lapierre, Kui Chen, Zhongxiu Zhen, Jianlin Hu, Chuan He, Jinghua Chen, Rulin Shi, Jun Zhang, Xingrong Ye, and Hao Chen
Atmos. Chem. Phys., 22, 5925–5942, https://doi.org/10.5194/acp-22-5925-2022, https://doi.org/10.5194/acp-22-5925-2022, 2022
Short summary
Short summary
The importance of convection to the ozone and nitrogen oxides (NOx) produced from lightning has long been an open question. We utilize the high-resolution chemistry model with ozonesondes and space observations to discuss the effects of convection over southeastern China, where few studies have been conducted. Our results show the transport and chemistry contributions for various storms and demonstrate the ability of TROPOMI to estimate the lightning NOx production over small-scale convection.
Daniel Goldberg, Monica Harkey, Benjamin de Foy, Laura Judd, Jeremiah Johnson, Greg Yarwood, and Tracey Holloway
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-299, https://doi.org/10.5194/acp-2022-299, 2022
Preprint under review for ACP
Short summary
Short summary
We offer recommendations for TROPOMI vs. model evaluations, using Texas as a case study. We find that TROPOMI NO2 version 2.3.1 algorithm increases NO2 +17 % in urban areas compared to version 1.3. Lightning NOx is important to account for and can contribute up 24 % of the column NO2 over the Gulf of Mexico and 8 % in Texas urban areas. Urban NOx emissions agree with TROPOMI NO2 version 2.3.1 to within 20 % in most circumstances. Near large power plants, the satellite appears to underrepresent NO2.
Liqiao Lei, Timothy A. Berkoff, Guillaume Gronoff, Jia Su, Amin R. Nehrir, Yonghua Wu, Fred Moshary, and Shi Kuang
Atmos. Meas. Tech., 15, 2465–2478, https://doi.org/10.5194/amt-15-2465-2022, https://doi.org/10.5194/amt-15-2465-2022, 2022
Short summary
Short summary
Aerosol extinction in the UVB (280–315 nm) is difficult to retrieve using simple lidar techniques due to the lack of lidar ratios at those wavelengths. The 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City region provided the opportunity to characterize the lidar ratio for UVB aerosol retrieval for the Langley Mobile Ozone Lidar (LMOL). A 292 nm aerosol product comparison between the NASA Langley High Altitude Lidar Observatory (HALO) and LMOL was also carried out.
Jos van Geffen, Henk Eskes, Steven Compernolle, Gaia Pinardi, Tijl Verhoelst, Jean-Christopher Lambert, Maarten Sneep, Mark ter Linden, Antje Ludewig, K. Folkert Boersma, and J. Pepijn Veefkind
Atmos. Meas. Tech., 15, 2037–2060, https://doi.org/10.5194/amt-15-2037-2022, https://doi.org/10.5194/amt-15-2037-2022, 2022
Short summary
Short summary
Nitrogen dioxide (NO2) is one of the main data products measured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite. This study describes improvements in the TROPOMI NO2 retrieval leading to version v2.2, operational since 1 July 2021. It compares results with previous versions v1.2–v1.4 and with Ozone Monitoring Instrument (OMI) and ground-based measurements.
Rory A. Barton-Grimley, Amin R. Nehrir, Susan A. Kooi, James E. Collins, David B. Harper, Anthony Notari, Joseph Lee, Joshua P. DiGangi, Yonghoon Choi, and Kenneth J. Davis
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-106, https://doi.org/10.5194/amt-2022-106, 2022
Preprint under review for AMT
Short summary
Short summary
HALO is a multi-function lidar that measures CH4 columns and profiles of H2O mixing ratio and aerosol/cloud optical properties. HALO supports carbon cycle, weather/dynamics, and radiation sciences suborbital research and is a technology testbed for future space-based differential absorption lidar missions. In 2019 HALO collected CH4 columns and aerosol/cloud profiles during the ACT-America campaign. Here we assess HALO's CH4 accuracy and precision compared to co-located in-situ observations.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Nickolay Krotkov, Fei Liu, and Henk Eskes
Atmos. Chem. Phys., 22, 4201–4236, https://doi.org/10.5194/acp-22-4201-2022, https://doi.org/10.5194/acp-22-4201-2022, 2022
Short summary
Short summary
The COVID-19 lockdown had a large impact on anthropogenic emissions and particularly on nitrogen dioxide (NO2). A new method of isolation of background, urban, and industrial components in NO2 is applied to estimate the lockdown impact on each of them. From 16 March to 15 June 2020, urban NO2 declined by −18 % to −28 % in most regions of the world, while background NO2 typically declined by less than −10 %.
John Sullivan, Arnoud Apituley, Nora Mettig, Karin Kreher, K. Emma Knowland, Marc Allart, Ankie Piters, Michel Van Roozendael, Pepijn Veefkind, Jerry Ziemke, Natalya Kramarova, Mark Weber, Alexei Rozanov, Laurence Twigg, Grant Sumnicht, and Thomas McGee
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-202, https://doi.org/10.5194/acp-2022-202, 2022
Preprint under review for ACP
Short summary
Short summary
A TROPOspheric Monitoring Instrument (TROPOMI) validation campaign was held in the Netherlands during September 2019. The TROpomi vaLIdation eXperiment (TROLIX-19) consisted of measurements in conjunction with several balloon-borne and surface chemical (e.g. ozone and nitrogen dioxide) measurements.
Takashi Sekiya, Kazuyuki Miyazaki, Henk Eskes, Kengo Sudo, Masayuki Takigawa, and Yugo Kanaya
Atmos. Meas. Tech., 15, 1703–1728, https://doi.org/10.5194/amt-15-1703-2022, https://doi.org/10.5194/amt-15-1703-2022, 2022
Short summary
Short summary
This study gives a systematic comparison of TROPOMI version 1.2 and OMI QA4ECV tropospheric NO2 column through global chemical data assimilation (DA) integration for April–May 2018. DA performance is controlled by measurement sensitivities, retrieval errors, and coverage. Due to reduced errors in TROPOMI, agreements against assimilated and independent observations were improved by TROPOMI DA compared to OMI DA. These results demonstrate that TROPOMI DA improves global analyses of NO2 and ozone.
Johan F. de Haan, Ping Wang, Maarten Sneep, J. Pepijn Veefkind, and Piet Stammes
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-439, https://doi.org/10.5194/gmd-2021-439, 2022
Preprint under review for GMD
Short summary
Short summary
In this paper we describe the principle of the DISAMAR radiative transfer model version 4.1.5 and demonstrate some applications. DISAMAR simulates satellite measured spectrum from ultraviolet to near infrared wavelength range and retrieves atmospheric composition, cloud, or aerosol parameters. Instrument features can be specified in the simulation and retrieval separately. DISAMAR has been used to derive aerosol layer height product and ozone profile product for TROPOMI.
Ukkyo Jeong, Si-Chee Tsay, Nai-Yung Christina Hsu, David M. Giles, John W. Cooper, Jaehwa Lee, Robert J. Swap, Brent N. Holben, James J. Butler, Sheng-Hsiang Wang, Somporn Chantara, Hyunkee Hong, Donghee Kim, and Jhoon Kim
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-956, https://doi.org/10.5194/acp-2021-956, 2022
Preprint under review for ACP
Short summary
Short summary
The ultraviolet (UV) measurements from satellite and ground are important for deriving information on several atmospheric trace and aerosol characteristics. Simultaneous retrievals of aerosol and trace gases in this study suggest that water uptake by aerosols is one of the important phenomena affecting aerosol properties over Northern Thailand, which is important for regional air quality and climate. Obtained aerosol properties covering the UV are also important for various satellite algorithms.
Tobias Christoph Valentin Werner Riess, Klaas Folkert Boersma, Jasper van Vliet, Wouter Peters, Maarten Sneep, Henk Eskes, and Jos van Geffen
Atmos. Meas. Tech., 15, 1415–1438, https://doi.org/10.5194/amt-15-1415-2022, https://doi.org/10.5194/amt-15-1415-2022, 2022
Short summary
Short summary
This paper reports on improved monitoring of ship nitrogen oxide emissions by TROPOMI. With its fantastic resolution we can identify lanes of ship nitrogen dioxide (NO2) pollution not detected from space before. The quality of TROPOMI NO2 data over sea is improved further by recent upgrades in cloud retrievals and the use of sun glint scenes. Lastly, we study the impact of COVID-19 on ship NO2 in European seas and compare the found reductions to emission estimates gained from ship-specific data.
Kang Sun, Mahdi Yousefi, Christopher Chan Miller, Kelly Chance, Gonzalo González Abad, Iouli E. Gordon, Xiong Liu, Ewan O'Sullivan, Christopher E. Sioris, and Steven C. Wofsy
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-52, https://doi.org/10.5194/amt-2022-52, 2022
Preprint under review for AMT
Short summary
Short summary
This study of upper atmospheric airglow from oxygen is motivated by the need to measure oxygen simultaneously with methane and CO2 in satellite remote sensing. We provide an accurate understanding of the spatial, temporal, and spectral distribution of airglow emissions, which will help satellite remote sensing of greenhouses and constraining the chemical and physical processes in the upper atmosphere.
Aditya Kumar, R. Bradley Pierce, Ravan Ahmadov, Gabriel Pereira, Saulo Freitas, Georg Grell, Chris Schmidt, Allen Lenzen, Joshua P. Schwarz, Anne E. Perring, Joseph M. Katich, John Hair, Jose L. Jimenez, Pedro Campuzano-Jost, and Hongyu Guo
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-33, https://doi.org/10.5194/acp-2022-33, 2022
Preprint under review for ACP
Short summary
Short summary
We use the WRF-Chem model with new implementations of GOES-16 fire radiative power (FRP) based wildfire emissions and plume-rise to interpret aerosol observations during the 2019 NASA-NOAA FIREX-AQ field campaign and perform model evaluations. The model shows significant improvements in simulating the variety of aerosol loading environments sampled during FIREX-AQ. Our results also highlight the importance of accurate wildfire diurnal cycle and aerosol chemical mechanisms in models.
Maria Tzortziou, Charlotte F. Kwong, Daniel Goldberg, Luke Schiferl, Róisín Commane, Nader Abuhassan, James J. Szykman, and Lukas C. Valin
Atmos. Chem. Phys., 22, 2399–2417, https://doi.org/10.5194/acp-22-2399-2022, https://doi.org/10.5194/acp-22-2399-2022, 2022
Short summary
Short summary
The COVID-19 pandemic created an extreme natural experiment in which sudden changes in human behavior significantly impacted urban air quality. Using a combination of model, satellite, and ground-based data, we examine the impact of multiple waves and phases of the pandemic on atmospheric nitrogen pollution in the New York metropolitan area, and address the role of weather as a key driver of high pollution episodes observed even during – and despite – the stringent early lockdowns.
Gyo-Hwang Choo, Kyunghwa Lee, Hyunkee Hong, Ukkyo Jeong, Wonei Choi, and Scott J. Janz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-51, https://doi.org/10.5194/amt-2022-51, 2022
Preprint under review for AMT
Short summary
Short summary
This study looked at morning and afternoon distribution of NO2 emissions in large cities and industrial areas in Korea, one of the largest NO2 emitters around the world, using GeoTASO, an airborne remote sensing instrument developed to support geostationary satellite missions. NO2 measurements from GeoTASO were compared with those from ground-based remote sensing instruments including Pandora and in-situ sensors.
Brian J. Carroll, Amin R. Nehrir, Susan A. Kooi, James E. Collins, Rory A. Barton-Grimley, Anthony Notari, David B. Harper, and Joseph Lee
Atmos. Meas. Tech., 15, 605–626, https://doi.org/10.5194/amt-15-605-2022, https://doi.org/10.5194/amt-15-605-2022, 2022
Short summary
Short summary
HALO is a recently developed lidar system that demonstrates new technologies and advanced algorithms for profiling water vapor as well as aerosol and cloud properties. The high-resolution, high-accuracy measurements have unique advantages within the suite of atmospheric instrumentation, such as directly trading water vapor measurement resolution for precision. This paper provides the methodology and first water vapor results, showing agreement with in situ and spaceborne sounder measurements.
Quintus Kleipool, Nico Rozemeijer, Mirna van Hoek, Jonatan Leloux, Erwin Loots, Antje Ludewig, Emiel van der Plas, Daley Adrichem, Raoul Harel, Simon Spronk, Mark ter Linden, Glen Jaross, David Haffner, Pepijn Veefkind, and Pieternel Levelt
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-430, https://doi.org/10.5194/amt-2021-430, 2022
Revised manuscript under review for AMT
Short summary
Short summary
A new collection 4 dataset for the OMI mission has been established to supersede the current collection 3 Level 1b data series. This dataset is produced with a newly developed L01b data processor based on the TROPOMI L01b processor. The collection 4 L1b data has a similar output format as the TROPOMI L1b data, for easy connection of the two data series. Many insights of the TROPOMI algorithms were included, as well as insights learned from the usage of OMI collection 3 data.
Amir H. Souri, Kelly Chance, Juseon Bak, Caroline R. Nowlan, Gonzalo González Abad, Yeonjin Jung, David C. Wong, Jingqiu Mao, and Xiong Liu
Atmos. Chem. Phys., 21, 18227–18245, https://doi.org/10.5194/acp-21-18227-2021, https://doi.org/10.5194/acp-21-18227-2021, 2021
Short summary
Short summary
The global pandemic is believed to have an impact on emissions of air pollutants such as nitrogen dioxide (NO2) and formaldehyde (HCHO). This study quantifies the changes in the amount of NOx and VOC emissions via state-of-the-art inverse modeling technique using satellite observations during the lockdown 2020 with respect to a baseline over Europe, which in turn, it permits unraveling atmospheric processes being responsible for ozone formation in a less cloudy month.
Daan Hubert, Klaus-Peter Heue, Jean-Christopher Lambert, Tijl Verhoelst, Marc Allaart, Steven Compernolle, Patrick D. Cullis, Angelika Dehn, Christian Félix, Bryan J. Johnson, Arno Keppens, Debra E. Kollonige, Christophe Lerot, Diego Loyola, Matakite Maata, Sukarni Mitro, Maznorizan Mohamad, Ankie Piters, Fabian Romahn, Henry B. Selkirk, Francisco R. da Silva, Ryan M. Stauffer, Anne M. Thompson, J. Pepijn Veefkind, Holger Vömel, Jacquelyn C. Witte, and Claus Zehner
Atmos. Meas. Tech., 14, 7405–7433, https://doi.org/10.5194/amt-14-7405-2021, https://doi.org/10.5194/amt-14-7405-2021, 2021
Short summary
Short summary
We assess the first 2 years of TROPOMI tropical tropospheric ozone column data. Comparisons to reference measurements by ozonesonde and satellite sensors show that TROPOMI bias (−0.1 to +2.3 DU) and precision (1.5 to 2.5 DU) meet mission requirements. Potential causes of bias and its spatio-temporal structure are discussed, as well as ways to identify sampling errors. Our analysis of known geophysical patterns demonstrates the improved performance of TROPOMI with respect to its predecessors.
Siqi Ma, Daniel Tong, Lok Lamsal, Julian Wang, Xuelei Zhang, Youhua Tang, Rick Saylor, Tianfeng Chai, Pius Lee, Patrick Campbell, Barry Baker, Shobha Kondragunta, Laura Judd, Timothy A. Berkoff, Scott J. Janz, and Ivanka Stajner
Atmos. Chem. Phys., 21, 16531–16553, https://doi.org/10.5194/acp-21-16531-2021, https://doi.org/10.5194/acp-21-16531-2021, 2021
Short summary
Short summary
Predicting high ozone gets more challenging as urban emissions decrease. How can different techniques be used to foretell the quality of air to better protect human health? We tested four techniques with the CMAQ model against observations during a field campaign over New York City. The new system proves to better predict the magnitude and timing of high ozone. These approaches can be extended to other regions to improve the predictability of high-O3 episodes in contemporary urban environments.
Francisco Javier Pérez-Invernón, Heidi Huntrieser, Thilo Erbertseder, Diego Loyola, Pieter Valks, Song Liu, Dale J. Allen, Kenneth E. Pickering, Eric J. Bucsela, Patrick Jöckel, Jos van Geffen, Henk Eskes, Sergio Soler, Francisco J. Gordillo-Vázquez, and Jeff Lapierre
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-286, https://doi.org/10.5194/amt-2021-286, 2021
Revised manuscript under review for AMT
Short summary
Short summary
Lightning is one of the major sources of nitrogen oxides (NOx) in the atmosphere, contributing to the tropospheric concentration of ozone and to the oxidising capacity of the atmosphere. In this work, we contribute to improve the estimations of lighting-produced NOx in the Ebro Valley and the Pyrenees by using two different TROPOMI products and comparing the results.
Henri Diémoz, Anna Maria Siani, Stefano Casadio, Anna Maria Iannarelli, Giuseppe Rocco Casale, Vladimir Savastiouk, Alexander Cede, Martin Tiefengraber, and Moritz Müller
Earth Syst. Sci. Data, 13, 4929–4950, https://doi.org/10.5194/essd-13-4929-2021, https://doi.org/10.5194/essd-13-4929-2021, 2021
Short summary
Short summary
A 20-year (1996–2017) record of nitrogen dioxide column densities collected in Rome by a Brewer spectrophotometer is presented, together with the novel algorithm employed to re-evaluate the series. The high quality of the data is demonstrated by comparison with reference instrumentation, including a co-located Pandora spectrometer. The data can be used for satellite validation and identification of NO2 trends. The method can be replicated on other instruments of the international Brewer network.
Tianlang Zhao, Jingqiu Mao, William R. Simpson, Isabelle De Smedt, Lei Zhu, Thomas F. Hanisco, Glenn M. Wolfe, Jason M. St. Clair, Gonzalo González Abad, Caroline R. Nowlan, Barbara Barletta, Simone Meinardi, and Donald R. Blake
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-820, https://doi.org/10.5194/acp-2021-820, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Monitoring formaldehyde (HCHO) can help understanding Arctic vegetation change. Here we compared satellite data and model and show that Alaska summertime HCHO is largely dominated by background from methane oxidation during mild wildfire year and is dominated by wildfire (largely from direct emission of fire) during strong fire year. Consequently, it is challenging to use satellite HCHO to study vegetation change in the Arctic region.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Nora Mettig, Mark Weber, Alexei Rozanov, Carlo Arosio, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Richard Querel, Thierry Leblanc, Sophie Godin-Beekmann, Rigel Kivi, and Matthew B. Tully
Atmos. Meas. Tech., 14, 6057–6082, https://doi.org/10.5194/amt-14-6057-2021, https://doi.org/10.5194/amt-14-6057-2021, 2021
Short summary
Short summary
TROPOMI is a nadir-viewing satellite that has observed global atmospheric trace gases at unprecedented spatial resolution since 2017. The retrieval of ozone profiles with high accuracy has been demonstrated using the TOPAS (Tikhonov regularised Ozone Profile retrievAl with SCIATRAN) algorithm and applying appropriate spectral corrections to TROPOMI UV data. Ozone profiles from TROPOMI were compared to ozonesonde and lidar profiles, showing an agreement to within 5 % in the stratosphere.
Jianfeng Li, Yuhang Wang, Ruixiong Zhang, Charles Smeltzer, Andrew Weinheimer, Jay Herman, K. Folkert Boersma, Edward A. Celarier, Russell W. Long, James J. Szykman, Ruben Delgado, Anne M. Thompson, Travis N. Knepp, Lok N. Lamsal, Scott J. Janz, Matthew G. Kowalewski, Xiong Liu, and Caroline R. Nowlan
Atmos. Chem. Phys., 21, 11133–11160, https://doi.org/10.5194/acp-21-11133-2021, https://doi.org/10.5194/acp-21-11133-2021, 2021
Short summary
Short summary
Comprehensive evaluations of simulated diurnal cycles of NO2 and NOy concentrations, vertical profiles, and tropospheric vertical column densities at two different resolutions with various measurements during the DISCOVER-AQ 2011 campaign show potential distribution biases of NOx emissions in the National Emissions Inventory 2011 at both 36 and 4 km resolutions, providing another possible explanation for the overestimation of model results.
Pieternel F. Levelt, Deborah C. Stein Zweers, Ilse Aben, Maite Bauwens, Tobias Borsdorff, Isabelle De Smedt, Henk J. Eskes, Christophe Lerot, Diego G. Loyola, Fabian Romahn, Trissevgeni Stavrakou, Nicolas Theys, Michel Van Roozendael, J. Pepijn Veefkind, and Tijl Verhoelst
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-534, https://doi.org/10.5194/acp-2021-534, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Using the COVID-19 lockdown periods as an example, we show how the Sentinel-5P/TROPOMI trace gas data (NO2, SO2, CO, HCHO and CHOCHO) can be used to understand impacts on air quality for regions and cities around the globe. We also provide information for both experienced and inexperienced users about how we created the data using state-of-the-art algorithms, where to get the data, methods taking meteorological and seaonal variability into consideration, and insights for future studies.
Steffen Beirle, Christian Borger, Steffen Dörner, Henk Eskes, Vinod Kumar, Adrianus de Laat, and Thomas Wagner
Earth Syst. Sci. Data, 13, 2995–3012, https://doi.org/10.5194/essd-13-2995-2021, https://doi.org/10.5194/essd-13-2995-2021, 2021
Short summary
Short summary
A catalog of point sources of nitrogen oxides was created using satellite observations of NO2. Key for the identification of point sources was the divergence, i.e., the difference between upwind and downwind levels of NO2.
The catalog lists 451 locations, of which 242 could be automatically matched to power plants. Other point sources are metal smelters, cement plants, or industrial areas. The catalog thus allows checking and improving of existing emission inventories.
Wenfu Tang, David P. Edwards, Louisa K. Emmons, Helen M. Worden, Laura M. Judd, Lok N. Lamsal, Jassim A. Al-Saadi, Scott J. Janz, James H. Crawford, Merritt N. Deeter, Gabriele Pfister, Rebecca R. Buchholz, Benjamin Gaubert, and Caroline R. Nowlan
Atmos. Meas. Tech., 14, 4639–4655, https://doi.org/10.5194/amt-14-4639-2021, https://doi.org/10.5194/amt-14-4639-2021, 2021
Short summary
Short summary
We use high-resolution airborne mapping spectrometer measurements to assess sub-grid variability within satellite pixels over urban regions. The sub-grid variability within satellite pixels increases with increasing satellite pixel sizes. Temporal variability within satellite pixels decreases with increasing satellite pixel sizes. This work is particularly relevant and useful for future satellite design, satellite data interpretation, and point-grid data comparisons.
Kristopher M. Bedka, Amin R. Nehrir, Michael Kavaya, Rory Barton-Grimley, Mark Beaubien, Brian Carroll, James Collins, John Cooney, G. David Emmitt, Steven Greco, Susan Kooi, Tsengdar Lee, Zhaoyan Liu, Sharon Rodier, and Gail Skofronick-Jackson
Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021, https://doi.org/10.5194/amt-14-4305-2021, 2021
Short summary
Short summary
This paper demonstrates the Doppler Aerosol WiNd (DAWN) lidar and High Altitude Lidar Observatory (HALO) measurement capabilities across a range of atmospheric conditions, compares DAWN and HALO measurements with Aeolus satellite Doppler wind lidar to gain an initial perspective of Aeolus performance, and discusses how atmospheric dynamic processes can be resolved and better understood through simultaneous observations of wind, water vapour, and aerosol profile observations.
Juseon Bak, Xiong Liu, Robert Spurr, Kai Yang, Caroline R. Nowlan, Christopher Chan Miller, Gonzalo Gonzalez Abad, and Kelly Chance
Atmos. Meas. Tech., 14, 2659–2672, https://doi.org/10.5194/amt-14-2659-2021, https://doi.org/10.5194/amt-14-2659-2021, 2021
Short summary
Short summary
We apply a principal component analysis (PCA)-based approach combined with lookup tables (LUTs) of corrections to accelerate the VLIDORT radiative transfer (RT) model used in the retrieval of ozone profiles from backscattered ultraviolet (UV) measurements by the Ozone Monitoring Instrument (OMI).
Ioanna Skoulidou, Maria-Elissavet Koukouli, Astrid Manders, Arjo Segers, Dimitris Karagkiozidis, Myrto Gratsea, Dimitris Balis, Alkiviadis Bais, Evangelos Gerasopoulos, Trisevgeni Stavrakou, Jos van Geffen, Henk Eskes, and Andreas Richter
Atmos. Chem. Phys., 21, 5269–5288, https://doi.org/10.5194/acp-21-5269-2021, https://doi.org/10.5194/acp-21-5269-2021, 2021
Short summary
Short summary
The performance of LOTOS-EUROS v2.2.001 regional chemical transport model NO2 simulations is investigated over Greece from June to December 2018. Comparison with in situ NO2 measurements shows a spatial correlation coefficient of 0.86, while the model underestimates the concentrations mostly during daytime (12 to 15:00 local time). Further, the simulated tropospheric NO2 columns are evaluated against ground-based MAX-DOAS NO2 measurements and S5P/TROPOMI observations for July and December 2018.
Eloise A. Marais, John F. Roberts, Robert G. Ryan, Henk Eskes, K. Folkert Boersma, Sungyeon Choi, Joanna Joiner, Nader Abuhassan, Alberto Redondas, Michel Grutter, Alexander Cede, Laura Gomez, and Monica Navarro-Comas
Atmos. Meas. Tech., 14, 2389–2408, https://doi.org/10.5194/amt-14-2389-2021, https://doi.org/10.5194/amt-14-2389-2021, 2021
Short summary
Short summary
Nitrogen oxides in the upper troposphere have a profound influence on the global troposphere, but routine reliable observations there are exceedingly rare. We apply cloud-slicing to TROPOMI total columns of nitrogen dioxide (NO2) at high spatial resolution to derive near-global observations of NO2 in the upper troposphere and show consistency with existing datasets. These data offer tremendous potential to address knowledge gaps in this oft underappreciated portion of the atmosphere.
Xiaoyi Zhao, Vitali Fioletov, Michael Brohart, Volodya Savastiouk, Ihab Abboud, Akira Ogyu, Jonathan Davies, Reno Sit, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, Moritz Müller, Debora Griffin, and Chris McLinden
Atmos. Meas. Tech., 14, 2261–2283, https://doi.org/10.5194/amt-14-2261-2021, https://doi.org/10.5194/amt-14-2261-2021, 2021
Short summary
Short summary
The Brewer spectrophotometer is one of the main instruments for measurements of atmospheric total column ozone. The global Brewer network largely relies on the world reference instruments (the Brewer triad) operated by Environment and Climate Change Canada since the early 1980s. This study provides an updated assessment (1999–2019) of the reference instrument performance, in terms of random uncertainties and long-term stability.
Maria-Elissavet Koukouli, Ioanna Skoulidou, Andreas Karavias, Isaak Parcharidis, Dimitris Balis, Astrid Manders, Arjo Segers, Henk Eskes, and Jos van Geffen
Atmos. Chem. Phys., 21, 1759–1774, https://doi.org/10.5194/acp-21-1759-2021, https://doi.org/10.5194/acp-21-1759-2021, 2021
Short summary
Short summary
In recent years, satellite observations have contributed to monitoring air quality. During the first COVID-19 lockdown, lower levels of nitrogen dioxide were observed over Greece by S5P/TROPOMI for March and April 2020 (than the preceding year) due to decreased transport emissions. Taking meteorology into account, using LOTOS-EUROS CTM simulations, the resulting decline due to the lockdown was estimated to range between 0 % and −37 % for the five largest Greek cities, with an average of ~ −10 %.
Frederik Tack, Alexis Merlaud, Marian-Daniel Iordache, Gaia Pinardi, Ermioni Dimitropoulou, Henk Eskes, Bart Bomans, Pepijn Veefkind, and Michel Van Roozendael
Atmos. Meas. Tech., 14, 615–646, https://doi.org/10.5194/amt-14-615-2021, https://doi.org/10.5194/amt-14-615-2021, 2021
Short summary
Short summary
We assess the TROPOMI tropospheric NO2 product (OFFL v1.03.01; 3.5 km × 7 km at nadir observations) based on coinciding airborne APEX reference observations (~75 m × 120 m), acquired over polluted regions in Belgium. The TROPOMI NO2 product meets the mission requirements in terms of precision and accuracy. However, we show that TROPOMI is biased low over polluted areas, mainly due to the limited spatial resolution of a priori input for the AMF computation.
Elena Spinei, Martin Tiefengraber, Moritz Müller, Manuel Gebetsberger, Alexander Cede, Luke Valin, James Szykman, Andrew Whitehill, Alexander Kotsakis, Fernando Santos, Nader Abbuhasan, Xiaoyi Zhao, Vitali Fioletov, Sum Chi Lee, and Robert Swap
Atmos. Meas. Tech., 14, 647–663, https://doi.org/10.5194/amt-14-647-2021, https://doi.org/10.5194/amt-14-647-2021, 2021
Short summary
Short summary
Plastics are widely used in everyday life and scientific equipment. This paper presents Delrin plastic off-gassing as a function of temperature on the atmospheric measurements of formaldehyde by Pandora spectroscopic instruments. The sealed telescope assembly containing Delrin components emitted large amounts of formaldehyde at 30–45 °C, interfering with the Pandora measurements. These results have a broader implication since electronic products often experience the same temperature.
Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Henk J. Eskes, Kai-Uwe Eichmann, Ann Mari Fjæraa, José Granville, Sander Niemeijer, Alexander Cede, Martin Tiefengraber, François Hendrick, Andrea Pazmiño, Alkiviadis Bais, Ariane Bazureau, K. Folkert Boersma, Kristof Bognar, Angelika Dehn, Sebastian Donner, Aleksandr Elokhov, Manuel Gebetsberger, Florence Goutail, Michel Grutter de la Mora, Aleksandr Gruzdev, Myrto Gratsea, Georg H. Hansen, Hitoshi Irie, Nis Jepsen, Yugo Kanaya, Dimitris Karagkiozidis, Rigel Kivi, Karin Kreher, Pieternel F. Levelt, Cheng Liu, Moritz Müller, Monica Navarro Comas, Ankie J. M. Piters, Jean-Pierre Pommereau, Thierry Portafaix, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Julia Remmers, Andreas Richter, John Rimmer, Claudia Rivera Cárdenas, Lidia Saavedra de Miguel, Valery P. Sinyakov, Wolfgang Stremme, Kimberly Strong, Michel Van Roozendael, J. Pepijn Veefkind, Thomas Wagner, Folkard Wittrock, Margarita Yela González, and Claus Zehner
Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, https://doi.org/10.5194/amt-14-481-2021, 2021
Short summary
Short summary
This paper reports on the ground-based validation of the NO2 data produced operationally by the TROPOMI instrument on board the Sentinel-5 Precursor satellite. Tropospheric, stratospheric, and total NO2 columns are compared to measurements collected from MAX-DOAS, ZSL-DOAS, and PGN/Pandora instruments respectively. The products are found to satisfy mission requirements in general, though negative mean differences are found at sites with high pollution levels. Potential causes are discussed.
Ivar R. van der Velde, Guido R. van der Werf, Sander Houweling, Henk J. Eskes, J. Pepijn Veefkind, Tobias Borsdorff, and Ilse Aben
Atmos. Chem. Phys., 21, 597–616, https://doi.org/10.5194/acp-21-597-2021, https://doi.org/10.5194/acp-21-597-2021, 2021
Short summary
Short summary
This paper compares the relative atmospheric enhancements of CO and NO2 measured by the space-based instrument TROPOMI over different fire-prone ecosystems around the world. We find distinct spatial and temporal patterns in the ΔNO2 / ΔCO ratio that correspond to regional differences in combustion efficiency. This joint analysis provides a better understanding of regional-scale combustion characteristics and can help the fire modeling community to improve existing global emission inventories.
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021, https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a ground-based remote sensing measurement technique that derives atmospheric aerosol and trace gas vertical profiles from skylight spectra. In this study, consistency and reliability of MAX-DOAS profiles are assessed by applying nine different evaluation algorithms to spectral data recorded during an intercomparison campaign in the Netherlands and by comparing the results to colocated supporting observations.
Maurits L. Kooreman, Piet Stammes, Victor Trees, Maarten Sneep, L. Gijsbert Tilstra, Martin de Graaf, Deborah C. Stein Zweers, Ping Wang, Olaf N. E. Tuinder, and J. Pepijn Veefkind
Atmos. Meas. Tech., 13, 6407–6426, https://doi.org/10.5194/amt-13-6407-2020, https://doi.org/10.5194/amt-13-6407-2020, 2020
Short summary
Short summary
We investigated the influence of clouds on the Absorbing Aerosol Index (AAI), an indicator of the presence of small particles in the atmosphere. Clouds produce artifacts in AAI calculations on the individual measurement (7 km) scale, which was not seen with previous instruments, as well as on large (1000+ km) scales. To reduce these artefacts, we used three different AAI calculation techniques of varying complexity. We find that the AAI artifacts are reduced when using more complex techniques.
Gaia Pinardi, Michel Van Roozendael, François Hendrick, Nicolas Theys, Nader Abuhassan, Alkiviadis Bais, Folkert Boersma, Alexander Cede, Jihyo Chong, Sebastian Donner, Theano Drosoglou, Anatoly Dzhola, Henk Eskes, Udo Frieß, José Granville, Jay R. Herman, Robert Holla, Jari Hovila, Hitoshi Irie, Yugo Kanaya, Dimitris Karagkiozidis, Natalia Kouremeti, Jean-Christopher Lambert, Jianzhong Ma, Enno Peters, Ankie Piters, Oleg Postylyakov, Andreas Richter, Julia Remmers, Hisahiro Takashima, Martin Tiefengraber, Pieter Valks, Tim Vlemmix, Thomas Wagner, and Folkard Wittrock
Atmos. Meas. Tech., 13, 6141–6174, https://doi.org/10.5194/amt-13-6141-2020, https://doi.org/10.5194/amt-13-6141-2020, 2020
Short summary
Short summary
We validate several GOME-2 and OMI tropospheric NO2 products with 23 MAX-DOAS and 16 direct sun instruments distributed worldwide, highlighting large horizontal inhomogeneities at several sites affecting the validation results. We propose a method for quantification and correction. We show the application of such correction reduces the satellite underestimation in almost all heterogeneous cases, but a negative bias remains over the MAX-DOAS and direct sun network ensemble for both satellites.
Dimitris Akritidis, Eleni Katragkou, Aristeidis K. Georgoulias, Prodromos Zanis, Stergios Kartsios, Johannes Flemming, Antje Inness, John Douros, and Henk Eskes
Atmos. Chem. Phys., 20, 13557–13578, https://doi.org/10.5194/acp-20-13557-2020, https://doi.org/10.5194/acp-20-13557-2020, 2020
Short summary
Short summary
We assess the Copernicus Atmosphere Monitoring Service (CAMS) global and regional forecasts performance during a complex aerosol transport event over Europe induced by the passage of Storm Ophelia in mid-October 2017. Comparison with satellite observations reveals a satisfactory performance of CAMS global forecast assisted by data assimilation, while comparison with ground-based measurements indicates that the CAMS regional system over-performs compared to the global one in terms of air quality.
Lei Zhu, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Kelly Chance, Eric C. Apel, Joshua P. DiGangi, Alan Fried, Thomas F. Hanisco, Rebecca S. Hornbrook, Lu Hu, Jennifer Kaiser, Frank N. Keutsch, Wade Permar, Jason M. St. Clair, and Glenn M. Wolfe
Atmos. Chem. Phys., 20, 12329–12345, https://doi.org/10.5194/acp-20-12329-2020, https://doi.org/10.5194/acp-20-12329-2020, 2020
Short summary
Short summary
We develop a validation platform for satellite HCHO retrievals using in situ observations from 12 aircraft campaigns. The platform offers an alternative way to quickly assess systematic biases in HCHO satellite products over large domains and long periods, facilitating optimization of retrieval settings and the minimization of retrieval biases. Application to the NASA operational HCHO product indicates that relative biases range from −44.5 % to +112.1 % depending on locations and seasons.
Kazuyuki Miyazaki, Kevin Bowman, Takashi Sekiya, Henk Eskes, Folkert Boersma, Helen Worden, Nathaniel Livesey, Vivienne H. Payne, Kengo Sudo, Yugo Kanaya, Masayuki Takigawa, and Koji Ogochi
Earth Syst. Sci. Data, 12, 2223–2259, https://doi.org/10.5194/essd-12-2223-2020, https://doi.org/10.5194/essd-12-2223-2020, 2020
Short summary
Short summary
This study presents the results from the Tropospheric Chemistry Reanalysis version 2 (TCR-2) for 2005–2018 obtained from the assimilation of multiple satellite measurements of ozone, CO, NO2, HNO3, and SO2 from the OMI, SCIAMACHY, GOME-2, TES, MLS, and MOPITT instruments. The evaluation results demonstrate the capability of the reanalysis products to improve understanding of the processes controlling variations in atmospheric composition, including long-term changes in air quality and emissions.
Guoyong Wen, Alexander Marshak, Si-Chee Tsay, Jay Herman, Ukkyo Jeong, Nader Abuhassan, Robert Swap, and Dong Wu
Atmos. Chem. Phys., 20, 10477–10491, https://doi.org/10.5194/acp-20-10477-2020, https://doi.org/10.5194/acp-20-10477-2020, 2020
Short summary
Short summary
We combine the ground-based observations and radiative transfer model to quantify the impact of the 2017 solar eclipse on surface shortwave irradiation reduction. We find that the eclipse caused local reductions of time-averaged surface flux of about 379 W m-2 (50 %) and 329 W m-2 (46 %) during the ~ 3 h course of the eclipse at the Casper and Columbia sites, respectively. We estimate that the Moon’s shadow caused a reduction of approximately 7 %–8 % in global average surface broadband SW radiation.
Srijana Lama, Sander Houweling, K. Folkert Boersma, Henk Eskes, Ilse Aben, Hugo A. C. Denier van der Gon, Maarten C. Krol, Han Dolman, Tobias Borsdorff, and Alba Lorente
Atmos. Chem. Phys., 20, 10295–10310, https://doi.org/10.5194/acp-20-10295-2020, https://doi.org/10.5194/acp-20-10295-2020, 2020
Short summary
Short summary
Rapid urbanization has increased the consumption of fossil fuel, contributing the degradation of urban air quality. Burning efficiency is a major factor determining the impact of fuel burning on the environment. We quantify the burning efficiency of fossil fuel use over six megacities using satellite remote sensing data. City governance can use these results to understand air pollution scenarios and to formulate effective air pollution control strategies.
Amir H. Souri, Caroline R. Nowlan, Gonzalo González Abad, Lei Zhu, Donald R. Blake, Alan Fried, Andrew J. Weinheimer, Armin Wisthaler, Jung-Hun Woo, Qiang Zhang, Christopher E. Chan Miller, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 20, 9837–9854, https://doi.org/10.5194/acp-20-9837-2020, https://doi.org/10.5194/acp-20-9837-2020, 2020
Short summary
Short summary
For the first time, we provide a joint nonlinear optimal estimate of NOx and NMVOC emissions during the KORUS-AQ campaign by simultaneously incorporating SAO's new product of HCHO columns from OMPS and OMI tropospheric NO2 columns into a regional model. Results demonstrate a promising improvement in the performance of the model in terms of HCHO and NO2 concentrations, which in turn enables us to quantify the impact of the emission changes on different pathways of ozone formation and loss.
Mengyao Liu, Jintai Lin, Hao Kong, K. Folkert Boersma, Henk Eskes, Yugo Kanaya, Qin He, Xin Tian, Kai Qin, Pinhua Xie, Robert Spurr, Ruijing Ni, Yingying Yan, Hongjian Weng, and Jingxu Wang
Atmos. Meas. Tech., 13, 4247–4259, https://doi.org/10.5194/amt-13-4247-2020, https://doi.org/10.5194/amt-13-4247-2020, 2020
Short summary
Short summary
Nitrogen oxides (NOx = NO + NO2) are important air pollutants in the troposphere and play crucial roles in the formation of ozone and particulate matter. The recently launched TROPOspheric Monitoring Instrument (TROPOMI) provides an opportunity to retrieve tropospheric concentrations of nitrogen dioxide (NO2) at an unprecedented high horizontal resolution. This work presents a new NO2 retrieval product over East Asia and further quantifies key factors affecting the retrieval, including aerosol.
Jay Herman, Alexander Cede, Liang Huang, Jerald Ziemke, Omar Torres, Nickolay Krotkov, Matthew Kowalewski, and Karin Blank
Atmos. Chem. Phys., 20, 8351–8380, https://doi.org/10.5194/acp-20-8351-2020, https://doi.org/10.5194/acp-20-8351-2020, 2020
Short summary
Short summary
The amount of erythemal irradiance reaching the Earth's surface has been calculated from ozone, aerosol, and reflectivity data obtained from OMI and DSCOVR/EPIC satellite instruments showing areas with high levels of solar UV radiation. Changes in erythemal irradiance, cloud transmission, aerosol transmission, and ozone absorption have been estimated for 14 years 2005–2018 in units of percent per year for 191 locations, mostly large cities, and from EPIC for the entire illuminated Earth.
Steven Compernolle, Tijl Verhoelst, Gaia Pinardi, José Granville, Daan Hubert, Arno Keppens, Sander Niemeijer, Bruno Rino, Alkis Bais, Steffen Beirle, Folkert Boersma, John P. Burrows, Isabelle De Smedt, Henk Eskes, Florence Goutail, François Hendrick, Alba Lorente, Andrea Pazmino, Ankie Piters, Enno Peters, Jean-Pierre Pommereau, Julia Remmers, Andreas Richter, Jos van Geffen, Michel Van Roozendael, Thomas Wagner, and Jean-Christopher Lambert
Atmos. Chem. Phys., 20, 8017–8045, https://doi.org/10.5194/acp-20-8017-2020, https://doi.org/10.5194/acp-20-8017-2020, 2020
Short summary
Short summary
Tropospheric and stratospheric NO2 columns from the OMI QA4ECV NO2 satellite product are validated by comparison with ground-based measurements at 11 sites. The OMI stratospheric column has a small negative bias, and the OMI tropospheric column has a stronger negative bias relative to the ground-based data. Discrepancies are attributed to comparison errors (e.g. difference in horizontal smoothing) and measurement errors (e.g. clouds, aerosols, vertical smoothing and a priori profile assumptions).
Antje Ludewig, Quintus Kleipool, Rolf Bartstra, Robin Landzaat, Jonatan Leloux, Erwin Loots, Peter Meijering, Emiel van der Plas, Nico Rozemeijer, Frank Vonk, and Pepijn Veefkind
Atmos. Meas. Tech., 13, 3561–3580, https://doi.org/10.5194/amt-13-3561-2020, https://doi.org/10.5194/amt-13-3561-2020, 2020
Short summary
Short summary
After the Sentinel-5 Precursor satellite launch on 13 October 2017, its single payload, the TROPOspheric Monitoring Instrument (TROPOMI), was tested and calibrated extensively. Changes due to ageing of the instrument and new insights have led to updates to the L1b processor and its calibration key data, leading to improvements of the data quality. Regularly scheduled calibration measurements are used in the nominal operations phase (since 30 April 2018) to correct instrument degradation.
Swadhin Nanda, Martin de Graaf, J. Pepijn Veefkind, Maarten Sneep, Mark ter Linden, Jiyunting Sun, and Pieternel F. Levelt
Atmos. Meas. Tech., 13, 3043–3059, https://doi.org/10.5194/amt-13-3043-2020, https://doi.org/10.5194/amt-13-3043-2020, 2020
Short summary
Short summary
This paper presents a first validation of the TROPOspheric Monitoring Instrument (TROPOMI) aerosol layer height (ALH) product, which is an estimate of the height of an aerosol layer using a spectrometer on board ESA's Sentinel-5 Precursor satellite mission. Comparison between the TROPOMI ALH product and co-located aerosol extinction heights from the CALIOP instrument on board NASA's CALIPSO mission show good agreement for selected cases over the ocean and large differences over land.
Pablo E. Saide, Meng Gao, Zifeng Lu, Daniel L. Goldberg, David G. Streets, Jung-Hun Woo, Andreas Beyersdorf, Chelsea A. Corr, Kenneth L. Thornhill, Bruce Anderson, Johnathan W. Hair, Amin R. Nehrir, Glenn S. Diskin, Jose L. Jimenez, Benjamin A. Nault, Pedro Campuzano-Jost, Jack Dibb, Eric Heim, Kara D. Lamb, Joshua P. Schwarz, Anne E. Perring, Jhoon Kim, Myungje Choi, Brent Holben, Gabriele Pfister, Alma Hodzic, Gregory R. Carmichael, Louisa Emmons, and James H. Crawford
Atmos. Chem. Phys., 20, 6455–6478, https://doi.org/10.5194/acp-20-6455-2020, https://doi.org/10.5194/acp-20-6455-2020, 2020
Short summary
Short summary
Air quality forecasts over the Korean Peninsula captured aerosol optical depth but largely overpredicted surface PM during a Chinese haze transport event. Model deficiency was related to the calculation of optical properties. In order to improve it, aerosol size representation needs to be refined in the calculations, and the representation of aerosol properties, such as size distribution, chemical composition, refractive index, hygroscopicity parameter, and density, needs to be improved.
Karin Kreher, Michel Van Roozendael, Francois Hendrick, Arnoud Apituley, Ermioni Dimitropoulou, Udo Frieß, Andreas Richter, Thomas Wagner, Johannes Lampel, Nader Abuhassan, Li Ang, Monica Anguas, Alkis Bais, Nuria Benavent, Tim Bösch, Kristof Bognar, Alexander Borovski, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Henning Finkenzeller, David Garcia-Nieto, Clio Gielen, Laura Gómez-Martín, Nan Hao, Bas Henzing, Jay R. Herman, Christian Hermans, Syedul Hoque, Hitoshi Irie, Junli Jin, Paul Johnston, Junaid Khayyam Butt, Fahim Khokhar, Theodore K. Koenig, Jonas Kuhn, Vinod Kumar, Cheng Liu, Jianzhong Ma, Alexis Merlaud, Abhishek K. Mishra, Moritz Müller, Monica Navarro-Comas, Mareike Ostendorf, Andrea Pazmino, Enno Peters, Gaia Pinardi, Manuel Pinharanda, Ankie Piters, Ulrich Platt, Oleg Postylyakov, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Alfonso Saiz-Lopez, Anja Schönhardt, Stefan F. Schreier, André Seyler, Vinayak Sinha, Elena Spinei, Kimberly Strong, Frederik Tack, Xin Tian, Martin Tiefengraber, Jan-Lukas Tirpitz, Jeroen van Gent, Rainer Volkamer, Mihalis Vrekoussis, Shanshan Wang, Zhuoru Wang, Mark Wenig, Folkard Wittrock, Pinhua H. Xie, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 13, 2169–2208, https://doi.org/10.5194/amt-13-2169-2020, https://doi.org/10.5194/amt-13-2169-2020, 2020
Short summary
Short summary
In September 2016, 36 spectrometers from 24 institutes measured a number of key atmospheric pollutants during an instrument intercomparison campaign (CINDI-2) at Cabauw, the Netherlands. Here we report on the outcome of this intercomparison exercise. The three major goals were to characterise the differences between the participating instruments, to define a robust methodology for performance assessment, and to contribute to the harmonisation of the measurement settings and retrieval methods.
Xiaoyi Zhao, Debora Griffin, Vitali Fioletov, Chris McLinden, Alexander Cede, Martin Tiefengraber, Moritz Müller, Kristof Bognar, Kimberly Strong, Folkert Boersma, Henk Eskes, Jonathan Davies, Akira Ogyu, and Sum Chi Lee
Atmos. Meas. Tech., 13, 2131–2159, https://doi.org/10.5194/amt-13-2131-2020, https://doi.org/10.5194/amt-13-2131-2020, 2020
Short summary
Short summary
Pandora NO2 measurements made at three sites located in the Toronto area are used to evaluate the TROPOspheric Monitoring Instrument (TROPOMI) NO2 data products, including standard NO2 and research data developed using a high-resolution regional air quality forecast model. TROPOMI pixels located upwind and downwind from the Pandora sites were analyzed by a new wind-based validation method, which revealed the spatial patterns of local and transported emissions and regional air quality changes.
Yuting Wang, Yong-Feng Ma, Henk Eskes, Antje Inness, Johannes Flemming, and Guy P. Brasseur
Atmos. Chem. Phys., 20, 4493–4521, https://doi.org/10.5194/acp-20-4493-2020, https://doi.org/10.5194/acp-20-4493-2020, 2020
Short summary
Short summary
The paper presents an evaluation of the CAMS global reanalysis of reactive gases performed for the period 2003–2016. The evaluation is performed by comparing concentrations of chemical species gathered during airborne field campaigns with calculated values. The reanalysis successfully reproduces the observed concentrations of ozone and carbon monoxide but generally underestimates the abundance of hydrocarbons. Large discrepancies exist for fast-reacting radicals such as OH and HO2.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Jos van Geffen, K. Folkert Boersma, Henk Eskes, Maarten Sneep, Mark ter Linden, Marina Zara, and J. Pepijn Veefkind
Atmos. Meas. Tech., 13, 1315–1335, https://doi.org/10.5194/amt-13-1315-2020, https://doi.org/10.5194/amt-13-1315-2020, 2020
Short summary
Short summary
The Tropospheric Monitoring Instrument (TROPOMI) provides atmospheric trace gase and cloud and aerosol property measurements at unprecedented spatial resolution. This study focusses on the TROPOMI NO2 slant column density (SCD) retrieval: the retrieval method used, the stability of and uncertainties in the SCDs, and a comparison with Ozone Monitoring Instrument (OMI) NO2 SCDs. TROPOMI shows a superior performance compared to OMI/QA4ECV and operates as anticipated from instrument specifications.
Anne-Marlene Blechschmidt, Joaquim Arteta, Adriana Coman, Lyana Curier, Henk Eskes, Gilles Foret, Clio Gielen, Francois Hendrick, Virginie Marécal, Frédérik Meleux, Jonathan Parmentier, Enno Peters, Gaia Pinardi, Ankie J. M. Piters, Matthieu Plu, Andreas Richter, Arjo Segers, Mikhail Sofiev, Álvaro M. Valdebenito, Michel Van Roozendael, Julius Vira, Tim Vlemmix, and John P. Burrows
Atmos. Chem. Phys., 20, 2795–2823, https://doi.org/10.5194/acp-20-2795-2020, https://doi.org/10.5194/acp-20-2795-2020, 2020
Short summary
Short summary
MAX-DOAS tropospheric NO2 vertical column retrievals from a set of European measurement stations are compared to regional air quality models which contribute to the operational Copernicus Atmosphere Monitoring Service (CAMS). Correlations are on the order of 35 %–75 %; large differences occur for individual pollution plumes. The results demonstrate that future model development needs to concentrate on improving representation of diurnal cycles and associated temporal scalings.
Jiyunting Sun, J. Pepijn Veefkind, Peter van Velthoven, L. Gijsbert Tilstra, Julien Chimot, Swadhin Nanda, and Pieternel F. Levelt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-39, https://doi.org/10.5194/acp-2020-39, 2020
Revised manuscript not accepted
Short summary
Short summary
ALH is one of the major concerns in quantifying aerosol absorption from the ultra-violet aerosol index (UVAI). The UVAI has a global daily record since 1978, whereas a corresponding ALH data set is limited. In this paper, we attempt to construct a global long-term ALH data set derived from the MERRA-2 aerosol fields that can be favorable in interpreting aerosol absorption from UVAI. We also give comments on several satellite ALH products in terms of the UVAI altitude dependence.
Iolanda Ialongo, Henrik Virta, Henk Eskes, Jari Hovila, and John Douros
Atmos. Meas. Tech., 13, 205–218, https://doi.org/10.5194/amt-13-205-2020, https://doi.org/10.5194/amt-13-205-2020, 2020
Short summary
Short summary
New satellite-based nitrogen dioxide (NO2) data from TROPOMI/Sentinel 5P are used to monitor air pollution levels at the urban site of Helsinki, Finland. NO2 is a polluting gas produced by fossil fuel combustion. TROPOMI NO2 data agree with ground-based reference measurements within 10 % and show similar day-to-day and weekly variability. The results confirm that satellite-based observations can bring additional information to traditional in situ measurements for urban air quality monitoring.
Samuel Quesada-Ruiz, Jean-Luc Attié, William A. Lahoz, Rachid Abida, Philippe Ricaud, Laaziz El Amraoui, Régina Zbinden, Andrea Piacentini, Mathieu Joly, Henk Eskes, Arjo Segers, Lyana Curier, Johan de Haan, Jukka Kujanpää, Albert Christiaan Plechelmus Oude Nijhuis, Johanna Tamminen, Renske Timmermans, and Pepijn Veefkind
Atmos. Meas. Tech., 13, 131–152, https://doi.org/10.5194/amt-13-131-2020, https://doi.org/10.5194/amt-13-131-2020, 2020
Swadhin Nanda, Martin de Graaf, J. Pepijn Veefkind, Mark ter Linden, Maarten Sneep, Johan de Haan, and Pieternel F. Levelt
Atmos. Meas. Tech., 12, 6619–6634, https://doi.org/10.5194/amt-12-6619-2019, https://doi.org/10.5194/amt-12-6619-2019, 2019
Short summary
Short summary
This paper discusses a neural network forward model used by the operational aerosol layer height (ALH) retrieval algorithm for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Sentinel-5 Precursor satellite mission. This model replaces online radiative transfer calculations within the oxygen A-band, improving the speed of the algorithm by 3 orders of magnitude. With this advancement in the algorithm's speed, TROPOMI is set to deliver the ALH product operationally.
Jiyunting Sun, Pepijn Veefkind, Swadhin Nanda, Peter van Velthoven, and Pieternel Levelt
Atmos. Meas. Tech., 12, 6319–6340, https://doi.org/10.5194/amt-12-6319-2019, https://doi.org/10.5194/amt-12-6319-2019, 2019
Short summary
Short summary
Single scattering albedo (SSA) is critical for reducing uncertainties in radiative forcing assessment. This paper presents two methods to retrieve SSA from satellite observations of the near-UV absorbing aerosol index (UVAI). The first is physically based radiative transfer simulations; the second is a statistically based machine learning algorithm. The result of the latter is encouraging. Both methods show that the ALH is necessary to quantitatively interpret aerosol absorption from UVAI.
Laura M. Judd, Jassim A. Al-Saadi, Scott J. Janz, Matthew G. Kowalewski, R. Bradley Pierce, James J. Szykman, Lukas C. Valin, Robert Swap, Alexander Cede, Moritz Mueller, Martin Tiefengraber, Nader Abuhassan, and David Williams
Atmos. Meas. Tech., 12, 6091–6111, https://doi.org/10.5194/amt-12-6091-2019, https://doi.org/10.5194/amt-12-6091-2019, 2019
Short summary
Short summary
In 2017, an airborne mapping spectrometer (GeoTASO) was used to observe high-resolution column densities of nitrogen dioxide (NO2) over the western shore of Lake Michigan and the Los Angeles Basin. These data were used to simulate the spatial resolution of current and future satellite NO2 retrievals to evaluate the impact of pixel size on comparisons to ground-based observations in urban areas. As spatial resolution improves, the sensitivity to more heterogeneously polluted scenes increases.
Renske Timmermans, Arjo Segers, Lyana Curier, Rachid Abida, Jean-Luc Attié, Laaziz El Amraoui, Henk Eskes, Johan de Haan, Jukka Kujanpää, William Lahoz, Albert Oude Nijhuis, Samuel Quesada-Ruiz, Philippe Ricaud, Pepijn Veefkind, and Martijn Schaap
Atmos. Chem. Phys., 19, 12811–12833, https://doi.org/10.5194/acp-19-12811-2019, https://doi.org/10.5194/acp-19-12811-2019, 2019
Short summary
Short summary
We present an evaluation of the added value of the Sentinel-4 and Sentinel-5P missions for air quality analyses of NO2. For this, synthetic observations for both missions are generated and combined with a chemistry transport model. While hourly Sentinel-4 NO2 observations over Europe benefit modelled NO2 analyses throughout the entire day, daily Sentinel-5P NO2 observations with global coverage show an impact up to 3–6 h after overpass. This supports the need for a combination of missions.
Huiqun Wang, Amir Hossein Souri, Gonzalo González Abad, Xiong Liu, and Kelly Chance
Atmos. Meas. Tech., 12, 5183–5199, https://doi.org/10.5194/amt-12-5183-2019, https://doi.org/10.5194/amt-12-5183-2019, 2019
Short summary
Short summary
Total column water vapor (TCWV) is retrieved from the spectra obtained by the Ozone Monitoring Instrument (OMI). Data filtering criteria are recommended. The OMI data generally compare well with reference datasets over both land and the oceans. The data are useful for a variety of applications spanning a range of spatial and temporal scales, such as atmospheric rivers, corn sweat and El Niño.
Xiaoyi Zhao, Debora Griffin, Vitali Fioletov, Chris McLinden, Jonathan Davies, Akira Ogyu, Sum Chi Lee, Alexandru Lupu, Michael D. Moran, Alexander Cede, Martin Tiefengraber, and Moritz Müller
Atmos. Chem. Phys., 19, 10619–10642, https://doi.org/10.5194/acp-19-10619-2019, https://doi.org/10.5194/acp-19-10619-2019, 2019
Short summary
Short summary
New nitrogen dioxide (NO2) retrieval algorithms are developed for Pandora zenith-sky measurements. A column-to-surface conversion look-up table was produced for the Pandora instruments; therefore, quick and practical Pandora-based surface NO2 concentration data can be obtained for air quality monitoring purposes. It is demonstrated that the surface NO2 concentration is controlled not only by the planetary boundary layer height but also by both boundary layer dynamics and photochemistry.
Hyeong-Ahn Kwon, Rokjin J. Park, Gonzalo González Abad, Kelly Chance, Thomas P. Kurosu, Jhoon Kim, Isabelle De Smedt, Michel Van Roozendael, Enno Peters, and John Burrows
Atmos. Meas. Tech., 12, 3551–3571, https://doi.org/10.5194/amt-12-3551-2019, https://doi.org/10.5194/amt-12-3551-2019, 2019
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) will be launched by South Korea in 2019, and it will measure radiances ranging from 300 to 500 nm every hour with a fine spatial resolution of 7 km x 8 km over Seoul in South Korea to monitor column concentrations of air pollutants including O3, NO2, SO2, and HCHO, as well as aerosol optical properties. This paper describes a GEMS formaldehyde retrieval algorithm including a number of sensitivity tests for algorithm evaluation.
Aristeidis K. Georgoulias, Ronald J. van der A, Piet Stammes, K. Folkert Boersma, and Henk J. Eskes
Atmos. Chem. Phys., 19, 6269–6294, https://doi.org/10.5194/acp-19-6269-2019, https://doi.org/10.5194/acp-19-6269-2019, 2019
Short summary
Short summary
In this paper, a ∼21-year self-consistent global dataset from four different satellite sensors is compiled for the first time to study the long-term tropospheric NO2 patterns and trends. A novel method capable of detecting the year when a reversal of trends happened shows that tropospheric NO2 concentrations switched from positive to negative trends and vice versa over several regions around the globe during the last 2 decades.
John T. Sullivan, Thomas J. McGee, Ryan M. Stauffer, Anne M. Thompson, Andrew Weinheimer, Christoph Knote, Scott Janz, Armin Wisthaler, Russell Long, James Szykman, Jinsoo Park, Youngjae Lee, Saewung Kim, Daun Jeong, Dianne Sanchez, Laurence Twigg, Grant Sumnicht, Travis Knepp, and Jason R. Schroeder
Atmos. Chem. Phys., 19, 5051–5067, https://doi.org/10.5194/acp-19-5051-2019, https://doi.org/10.5194/acp-19-5051-2019, 2019
Short summary
Short summary
During the May–June 2016 International Cooperative Air Quality Field Study in Korea (KORUS-AQ), pollution reached the remote Taehwa Research Forest (TRF) site. Two case studies are examined and observations clearly identify TRF and the surrounding rural areas as long-term receptor sites for severe urban pollution events. In summary, domestic emissions may be causing more pollution than by transboundary pathways, which have been historically believed to be the major source of air pollution.
Raid M. Suleiman, Kelly Chance, Xiong Liu, Gonzalo González Abad, Thomas P. Kurosu, Francois Hendrick, and Nicolas Theys
Atmos. Meas. Tech., 12, 2067–2084, https://doi.org/10.5194/amt-12-2067-2019, https://doi.org/10.5194/amt-12-2067-2019, 2019
Short summary
Short summary
This paper presents the retrieval algorithm for the operational OMBRO data product and shows comparisons with correlative measurements and retrieval results. We highlight the physics of the retrieval. We compare the OMBRO products with other satellite and in situ measurements of BrO and illustrate the quality of the product on a global scale. We study OMBRO enhancements in volcanic plumes and over salt lakes. We also discuss the shortcomings and future updates of the OMBRO product.
Antje Inness, Melanie Ades, Anna Agustí-Panareda, Jérôme Barré, Anna Benedictow, Anne-Marlene Blechschmidt, Juan Jose Dominguez, Richard Engelen, Henk Eskes, Johannes Flemming, Vincent Huijnen, Luke Jones, Zak Kipling, Sebastien Massart, Mark Parrington, Vincent-Henri Peuch, Miha Razinger, Samuel Remy, Michael Schulz, and Martin Suttie
Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, https://doi.org/10.5194/acp-19-3515-2019, 2019
Short summary
Short summary
This paper describes a new global dataset of atmospheric composition data for the years 2003-2016 that has been produced by the Copernicus Atmosphere Monitoring Service (CAMS). It is called the CAMS reanalysis and provides information on aerosols and reactive gases. The CAMS reanalysis shows an improved performance compared to our previous atmospheric composition reanalyses; has smaller biases compared to independent O3, CO, NO2 and aerosol observations; and is more consistent in time.
Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, and Armin Wisthaler
Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019, https://doi.org/10.5194/acp-19-2765-2019, 2019
Short summary
Short summary
Organic aerosol (OA) intimately links natural and anthropogenic emissions with air quality and climate. Direct OA measurements from space are currently not possible. This paper describes a new method to estimate OA by combining satellite HCHO and in situ OA and HCHO. The OA estimate is validated with the ground network. This new method has a potential for mapping observation-based global OA estimate.
Julien Chimot, J. Pepijn Veefkind, Johan F. de Haan, Piet Stammes, and Pieternel F. Levelt
Atmos. Meas. Tech., 12, 491–516, https://doi.org/10.5194/amt-12-491-2019, https://doi.org/10.5194/amt-12-491-2019, 2019
Short summary
Short summary
The reference OMI tropospheric NO2 product was reprocessed by new aerosol correction parameters retrieved from the 477 nm O2–O2 band over eastern China and South America for 2 years. These new parameters are from different and separate algorithms, allowing improved use of the 477 nm O2–O2 band. All the tested approaches improve the aerosol correction in the OMI tropospheric NO2 product. We demonstrate the possibility of applying an explicit aerosol correction based on the 477 nm O2–O2 band.
Mengyao Liu, Jintai Lin, K. Folkert Boersma, Gaia Pinardi, Yang Wang, Julien Chimot, Thomas Wagner, Pinhua Xie, Henk Eskes, Michel Van Roozendael, François Hendrick, Pucai Wang, Ting Wang, Yingying Yan, Lulu Chen, and Ruijing Ni
Atmos. Meas. Tech., 12, 1–21, https://doi.org/10.5194/amt-12-1-2019, https://doi.org/10.5194/amt-12-1-2019, 2019
Short summary
Short summary
China has become the world’s largest emitter of NOx, which mainly comes from vehicle exhaust, power plants, etc. However, there are no official ground-based measurements before 2013, so satellites have been widely used to monitor and analyze NOx pollution here. Aerosol is the key factor influencing the accuracy of the satellite NOx product. Our study provides a more accurate way to account for aerosol's influence compared to current widely used products.
Tim Bösch, Vladimir Rozanov, Andreas Richter, Enno Peters, Alexei Rozanov, Folkard Wittrock, Alexis Merlaud, Johannes Lampel, Stefan Schmitt, Marijn de Haij, Stijn Berkhout, Bas Henzing, Arnoud Apituley, Mirjam den Hoed, Jan Vonk, Martin Tiefengraber, Moritz Müller, and John Philip Burrows
Atmos. Meas. Tech., 11, 6833–6859, https://doi.org/10.5194/amt-11-6833-2018, https://doi.org/10.5194/amt-11-6833-2018, 2018
Short summary
Short summary
A new MAX-DOAS profiling algorithm for aerosols and trace
gases was developed.
The performance of this novel algorithm was tested with the help of
synthetic data and measurements from the CINDI-2 campaign in Cabauw, the
Netherlands, in 2016.
Kang Sun, Lei Zhu, Karen Cady-Pereira, Christopher Chan Miller, Kelly Chance, Lieven Clarisse, Pierre-François Coheur, Gonzalo González Abad, Guanyu Huang, Xiong Liu, Martin Van Damme, Kai Yang, and Mark Zondlo
Atmos. Meas. Tech., 11, 6679–6701, https://doi.org/10.5194/amt-11-6679-2018, https://doi.org/10.5194/amt-11-6679-2018, 2018
Short summary
Short summary
An agile, physics-based approach is developed to oversample irregular satellite observations to a high-resolution common grid. Instead of assuming each sounding as a point or a polygon as in previous methods, the proposed physical oversampling represents soundings as distributions of sensitivity on the ground. This sensitivity distribution can be determined by the spatial response function of each satellite sensor, parameterized as generalized 2-D super Gaussian functions.
K. Folkert Boersma, Henk J. Eskes, Andreas Richter, Isabelle De Smedt, Alba Lorente, Steffen Beirle, Jos H. G. M. van Geffen, Marina Zara, Enno Peters, Michel Van Roozendael, Thomas Wagner, Joannes D. Maasakkers, Ronald J. van der A, Joanne Nightingale, Anne De Rudder, Hitoshi Irie, Gaia Pinardi, Jean-Christopher Lambert, and Steven C. Compernolle
Atmos. Meas. Tech., 11, 6651–6678, https://doi.org/10.5194/amt-11-6651-2018, https://doi.org/10.5194/amt-11-6651-2018, 2018
Short summary
Short summary
This paper describes a new, improved data record of 22+ years of coherent nitrogen dioxide (NO2) pollution measurements from different satellite instruments. Our work helps to ensure that climate data are of sufficient quality to draw reliable conclusions and shape decisions. It shows how dedicated intercomparisons of retrieval sub-steps have led to improved NO2 measurements from the GOME, SCIAMACHY, GOME-2(A), and OMI sensors, and how quality assurance of the new data product is achieved.
Quintus Kleipool, Antje Ludewig, Ljubiša Babić, Rolf Bartstra, Remco Braak, Werner Dierssen, Pieter-Jan Dewitte, Pepijn Kenter, Robin Landzaat, Jonatan Leloux, Erwin Loots, Peter Meijering, Emiel van der Plas, Nico Rozemeijer, Dinand Schepers, Daniel Schiavini, Joost Smeets, Giuseppe Vacanti, Frank Vonk, and Pepijn Veefkind
Atmos. Meas. Tech., 11, 6439–6479, https://doi.org/10.5194/amt-11-6439-2018, https://doi.org/10.5194/amt-11-6439-2018, 2018
Short summary
Short summary
This paper reports on the pre-launch calibration of the TROPOMI instrument on board ESA's Sentinel 5P satellite. This calibration is needed to convert the raw instrument digital data to physical quantities like Earth radiance and Sun irradiance. From these quantities atmospheric properties can be derived. The paper shows that the chosen approach to calibration and analysis was successful and that
the achieved accuracy makes high-quality observations of the Earth's atmosphere feasible.
Caroline R. Nowlan, Xiong Liu, Scott J. Janz, Matthew G. Kowalewski, Kelly Chance, Melanie B. Follette-Cook, Alan Fried, Gonzalo González Abad, Jay R. Herman, Laura M. Judd, Hyeong-Ahn Kwon, Christopher P. Loughner, Kenneth E. Pickering, Dirk Richter, Elena Spinei, James Walega, Petter Weibring, and Andrew J. Weinheimer
Atmos. Meas. Tech., 11, 5941–5964, https://doi.org/10.5194/amt-11-5941-2018, https://doi.org/10.5194/amt-11-5941-2018, 2018
Short summary
Short summary
The GEO-CAPE Airborne Simulator (GCAS) was developed in support of future air quality and ocean color geostationary satellite missions. GCAS flew in its first field campaign on NASA's King Air B-200 aircraft during DISCOVER-AQ Texas in 2013. In this paper, we determine nitrogen dioxide and formaldehyde columns over Houston from the GCAS air quality sensor and compare those results with measurements made from ground-based Pandora spectrometers and in situ airborne instruments.
Dimitris Akritidis, Eleni Katragkou, Prodromos Zanis, Ioannis Pytharoulis, Dimitris Melas, Johannes Flemming, Antje Inness, Hannah Clark, Matthieu Plu, and Henk Eskes
Atmos. Chem. Phys., 18, 15515–15534, https://doi.org/10.5194/acp-18-15515-2018, https://doi.org/10.5194/acp-18-15515-2018, 2018
Short summary
Short summary
Analysis and evaluation of the Copernicus Atmosphere Monitoring Service (CAMS) global and regional forecast systems during a deep stratosphere-to-troposphere ozone transport event over Europe in January 2017. Radiosondes, satellite images, ozonesondes and aircraft measurements were used to investigate the folding of the tropopause at several European sites and the induced presence of dry and ozone-rich air in the troposphere.
Elizabeth M. Lennartson, Jun Wang, Juping Gu, Lorena Castro Garcia, Cui Ge, Meng Gao, Myungje Choi, Pablo E. Saide, Gregory R. Carmichael, Jhoon Kim, and Scott J. Janz
Atmos. Chem. Phys., 18, 15125–15144, https://doi.org/10.5194/acp-18-15125-2018, https://doi.org/10.5194/acp-18-15125-2018, 2018
Short summary
Short summary
This paper is among the first to study the diurnal variations of AOD, PM2.5, and their relationships in South Korea. We show that the PM2.5–AOD relationship has strong diurnal variations, and, hence, using AOD data retrieved from geostationary satellite can improve the monitoring of surface PM2.5 air quality on a daily basis as well as constrain the diurnal variation of aerosol emission.
Hansen Cao, Tzung-May Fu, Lin Zhang, Daven K. Henze, Christopher Chan Miller, Christophe Lerot, Gonzalo González Abad, Isabelle De Smedt, Qiang Zhang, Michel van Roozendael, François Hendrick, Kelly Chance, Jie Li, Junyu Zheng, and Yuanhong Zhao
Atmos. Chem. Phys., 18, 15017–15046, https://doi.org/10.5194/acp-18-15017-2018, https://doi.org/10.5194/acp-18-15017-2018, 2018
Short summary
Short summary
Our top-down estimates for annual total Chinese NMVOC emissions was 30.7 to 49.5 Tg y−1, including 16.4 to 23.6 Tg y−1 from anthropogenic sources, 12.2 to 22.8 Tg y−1 from biogenic sources, and 2.08 to 3.13 Tg y−1 from biomass burning. Our four inversions consistently showed that the emissions of Chinese anthropogenic NMVOC precursors of glyoxal were larger than the a priori estimates. The glyoxal and formaldehyde constraints helped distinguish the NMVOC species from different sources.
Jiyunting Sun, J. Pepijn Veefkind, Peter van Velthoven, and Pieternel F. Levelt
Atmos. Meas. Tech., 11, 5261–5277, https://doi.org/10.5194/amt-11-5261-2018, https://doi.org/10.5194/amt-11-5261-2018, 2018
Short summary
Short summary
Near-UV AAI is a qualitative parameter detecting the elevated absorbing aerosol layer. A long-term AAI record of satellite observations has the potential to quantify aerosol absorption on a global scale. Our study presents the possibility of retrieving single-scattering albedo with OMI-measured AAI. The comparison with AERONET is satisfactory and further research will be on how the aerosol wavelength-dependent refractive index and aerosol profile affect the quantification of aerosol absorption.
Elena Spinei, Andrew Whitehill, Alan Fried, Martin Tiefengraber, Travis N. Knepp, Scott Herndon, Jay R. Herman, Moritz Müller, Nader Abuhassan, Alexander Cede, Dirk Richter, James Walega, James Crawford, James Szykman, Lukas Valin, David J. Williams, Russell Long, Robert J. Swap, Youngjae Lee, Nabil Nowak, and Brett Poche
Atmos. Meas. Tech., 11, 4943–4961, https://doi.org/10.5194/amt-11-4943-2018, https://doi.org/10.5194/amt-11-4943-2018, 2018
Short summary
Short summary
Formaldehyde is toxic to humans and is formed in the atmosphere in the presence of air pollution, but the measurements are sparse. Pandonia Global Network instruments measure total formaldehyde column from the surface to the top of troposphere and will be widely available. This study compared formaldehyde Pandora columns with the surface and aircraft-integrated columns near Seoul, South Korea. Relatively good agreement was observed between the three datasets with some overestimation by Pandora.
Jay Herman, Elena Spinei, Alan Fried, Jhoon Kim, Jae Kim, Woogyung Kim, Alexander Cede, Nader Abuhassan, and Michal Segal-Rozenhaimer
Atmos. Meas. Tech., 11, 4583–4603, https://doi.org/10.5194/amt-11-4583-2018, https://doi.org/10.5194/amt-11-4583-2018, 2018
Short summary
Short summary
Nine Pandora Spectrometer Instruments were installed at 8 sites for KORUS-AQ (Korea U.S.-Air Quality) field study from ground, aircraft, and satellite measurements. The quantities retrieved were total column measurements of ozone, nitrogen dioxide, and formaldehyde. We show the distribution of NO2 and HCHO air pollutants vs location and time of day and comparisons with aircraft and satellite data. For some of the sites, long-term time series are available to asses changes.
Jay Herman, Guoyong Wen, Alexander Marshak, Karin Blank, Liang Huang, Alexander Cede, Nader Abuhassan, and Matthew Kowalewski
Atmos. Meas. Tech., 11, 4373–4388, https://doi.org/10.5194/amt-11-4373-2018, https://doi.org/10.5194/amt-11-4373-2018, 2018
Short summary
Short summary
The DSCOVR/EPIC instrument located near the Lagrange 1 Earth–Sun gravitational balance point is able to view the entire sunlit disk of the Earth. This means that during the eclipse of 21 August 2017 EPIC was able to see the region of totality and the much larger region of partial eclipse. Because of this, EPIC is able to measure the global reduction of reflected solar flux. For the wavelength range 388 to 780 nm, we estimated a 10 % reduction in reflected radiation.
Marina Zara, K. Folkert Boersma, Isabelle De Smedt, Andreas Richter, Enno Peters, Jos H. G. M. van Geffen, Steffen Beirle, Thomas Wagner, Michel Van Roozendael, Sergey Marchenko, Lok N. Lamsal, and Henk J. Eskes
Atmos. Meas. Tech., 11, 4033–4058, https://doi.org/10.5194/amt-11-4033-2018, https://doi.org/10.5194/amt-11-4033-2018, 2018
Short summary
Short summary
Nitrogen dioxide and formaldehyde satellite data are used for air quality and climate studies. We quantify and characterise slant column uncertainties from different research groups. Our evaluation is motivated by recently improved techniques and by a desire to provide fully traceable uncertainty budget for climate records generated within the QA4ECV project. The improved slant columns are in agreement but with substantial differences in the reported uncertainties between groups and instruments.
Swadhin Nanda, J. Pepijn Veefkind, Martin de Graaf, Maarten Sneep, Piet Stammes, Johan F. de Haan, Abram F. J. Sanders, Arnoud Apituley, Olaf Tuinder, and Pieternel F. Levelt
Atmos. Meas. Tech., 11, 3263–3280, https://doi.org/10.5194/amt-11-3263-2018, https://doi.org/10.5194/amt-11-3263-2018, 2018
Short summary
Short summary
An approach to estimate the height of aerosol plumes over land from satellite measurements of the oxygen A band is proposed. The method, termed dynamic scaling, forces the retrieval to use spectral points that contain more height information. The method is tested in a synthetic environment as well as with GOME-2A and GOME-2B measurements of wildfire plumes over Europe, with very encouraging results. This method can be easily applied to other aerosol height algorithms using least squares.
Arve Kylling, Sophie Vandenbussche, Virginie Capelle, Juan Cuesta, Lars Klüser, Luca Lelli, Thomas Popp, Kerstin Stebel, and Pepijn Veefkind
Atmos. Meas. Tech., 11, 2911–2936, https://doi.org/10.5194/amt-11-2911-2018, https://doi.org/10.5194/amt-11-2911-2018, 2018
Short summary
Short summary
The aerosol layer height is one of four aerosol parameters which is needed to enhance our understanding of aerosols' role in the climate system. Both active and passive measurement methods may be used to estimate the aerosol layer height. Aerosol height estimates made from passive infrared and solar satellite sensors measurements are compared with satellite-borne lidar estimates. There is considerable variation between the retrieved dust heights and how they compare with the lidar.
Lisa K. Behrens, Andreas Hilboll, Andreas Richter, Enno Peters, Henk Eskes, and John P. Burrows
Atmos. Meas. Tech., 11, 2769–2795, https://doi.org/10.5194/amt-11-2769-2018, https://doi.org/10.5194/amt-11-2769-2018, 2018
Short summary
Short summary
We developed a novel NO2 DOAS retrieval for the GOME-2A instrument in the UV spectral range, which is compared with a NO2 retrieval in the visible and model values. Regions representative for both anthropogenic and biomass burning NO2 pollution are investigated. Anthropogenic air pollution is mostly located in the boundary layer close to the surface. In contrast, biomass burning NO2 is often uplifted into elevated layers.
Isabelle De Smedt, Nicolas Theys, Huan Yu, Thomas Danckaert, Christophe Lerot, Steven Compernolle, Michel Van Roozendael, Andreas Richter, Andreas Hilboll, Enno Peters, Mattia Pedergnana, Diego Loyola, Steffen Beirle, Thomas Wagner, Henk Eskes, Jos van Geffen, Klaas Folkert Boersma, and Pepijn Veefkind
Atmos. Meas. Tech., 11, 2395–2426, https://doi.org/10.5194/amt-11-2395-2018, https://doi.org/10.5194/amt-11-2395-2018, 2018
Short summary
Short summary
This paper introduces the formaldehyde (HCHO) tropospheric vertical column retrieval algorithm implemented in the TROPOMI/Sentinel-5 Precursor operational processor, and comprehensively describes its various retrieval steps. Furthermore, algorithmic improvements developed in the framework of the EU FP7-project QA4ECV are described for future updates of the processor. Detailed error estimates are discussed in the light of Copernicus user requirements and needs for validation are highlighted.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Jennifer Kaiser, Daniel J. Jacob, Lei Zhu, Katherine R. Travis, Jenny A. Fisher, Gonzalo González Abad, Lin Zhang, Xuesong Zhang, Alan Fried, John D. Crounse, Jason M. St. Clair, and Armin Wisthaler
Atmos. Chem. Phys., 18, 5483–5497, https://doi.org/10.5194/acp-18-5483-2018, https://doi.org/10.5194/acp-18-5483-2018, 2018
Short summary
Short summary
Isoprene emissions from vegetation have a large effect on atmospheric chemistry and air quality. Here we use the adjoint of GEOS-Chem in an inversion of OMI formaldehyde observations to produce top-down estimates of isoprene emissions in the southeast US during the summer of 2013. We find that MEGAN v2.1 is biased high on average by 40 %. Our downward correction of isoprene emissions leads to a small reduction in modeled surface O3 and decreases the contribution of isoprene to organic aerosol.
Julien Chimot, J. Pepijn Veefkind, Tim Vlemmix, and Pieternel F. Levelt
Atmos. Meas. Tech., 11, 2257–2277, https://doi.org/10.5194/amt-11-2257-2018, https://doi.org/10.5194/amt-11-2257-2018, 2018
Short summary
Short summary
Aerosol layer height (ALH) was retrieved from the OMI 477 nm O2–O2 band and its spatial pattern evaluated over selected cloud-free scenes. We used a neural network approach previously trained and developed. Comparison with CALIOP aerosol level 2 products over urban and industrial pollution in east China shows consistent spatial patterns. In addition, we show the possibility to determine the height of thick aerosol layers released by intensive biomass burning events in South America and Russia.
Fei Liu, Ronald J. van der A, Henk Eskes, Jieying Ding, and Bas Mijling
Atmos. Chem. Phys., 18, 4171–4186, https://doi.org/10.5194/acp-18-4171-2018, https://doi.org/10.5194/acp-18-4171-2018, 2018
Short summary
Short summary
We used ground measurements from the recently developed air quality monitoring network in China to validate modeling surface NO2 concentrations from the regional chemical transport model (CTM). The CTM simulations driven by satellite-derived and bottom-up inventories show negative and positive differences against the ground measurements, respectively. Our study suggests an improvement of the distribution of emissions between urban and rural areas in the satellite-derived inventory.
Jay Herman, Liang Huang, Richard McPeters, Jerry Ziemke, Alexander Cede, and Karin Blank
Atmos. Meas. Tech., 11, 177–194, https://doi.org/10.5194/amt-11-177-2018, https://doi.org/10.5194/amt-11-177-2018, 2018
Short summary
Short summary
We launched the DSCOVR spacecraft to an orbit located near the earth–sun gravitational plus centrifugal force balance point known as Lagrange 1. One of the earth-viewing instruments, EPIC, measures earth-reflected radiances in 10 wavelength channels ranging from 317.5 nm to 779.5 nm. We use the UV channels to retrieve O3 and scene reflectivity, and to derive the first measurement of erythemal flux (sunburn) from sunrise to sunset at the earth's surface.
Swadhin Nanda, Martin de Graaf, Maarten Sneep, Johan F. de Haan, Piet Stammes, Abram F. J. Sanders, Olaf Tuinder, J. Pepijn Veefkind, and Pieternel F. Levelt
Atmos. Meas. Tech., 11, 161–175, https://doi.org/10.5194/amt-11-161-2018, https://doi.org/10.5194/amt-11-161-2018, 2018
Short summary
Short summary
Estimating aerosol layer height in the atmosphere from satellite data in the oxygen A band (758–770 nm) over land is challenging over land, since the surface is generally very bright in this wavelength region. This paper discusses an interplay between the surface and the atmosphere in their contributions to the top-of-atmosphere reflectance spectrum and the consequent biases obtained while estimating aerosol layer height, using synthetic data and real data from the GOME-2 satellite instrument.
Astrid M. M. Manders, Peter J. H. Builtjes, Lyana Curier, Hugo A. C. Denier van der Gon, Carlijn Hendriks, Sander Jonkers, Richard Kranenburg, Jeroen J. P. Kuenen, Arjo J. Segers, Renske M. A. Timmermans, Antoon J. H. Visschedijk, Roy J. Wichink Kruit, W. Addo J. van Pul, Ferd J. Sauter, Eric van der Swaluw, Daan P. J. Swart, John Douros, Henk Eskes, Erik van Meijgaard, Bert van Ulft, Peter van Velthoven, Sabine Banzhaf, Andrea C. Mues, Rainer Stern, Guangliang Fu, Sha Lu, Arnold Heemink, Nils van Velzen, and Martijn Schaap
Geosci. Model Dev., 10, 4145–4173, https://doi.org/10.5194/gmd-10-4145-2017, https://doi.org/10.5194/gmd-10-4145-2017, 2017
Short summary
Short summary
The regional-scale air quality model LOTOS–EUROS has been developed by a consortium of Dutch institutes. Recently, version 2.0 of the model was released as an open-source version. Next to a technical description and model evaluation for 2012, this paper presents the model developments in context of the history of air quality modelling and provides an outlook for future directions. Key and innovative applications of LOTOS–EUROS are also highlighted.
Travis N. Knepp, James J. Szykman, Russell Long, Rachelle M. Duvall, Jonathan Krug, Melinda Beaver, Kevin Cavender, Keith Kronmiller, Michael Wheeler, Ruben Delgado, Raymond Hoff, Timothy Berkoff, Erik Olson, Richard Clark, Daniel Wolfe, David Van Gilst, and Doreen Neil
Atmos. Meas. Tech., 10, 3963–3983, https://doi.org/10.5194/amt-10-3963-2017, https://doi.org/10.5194/amt-10-3963-2017, 2017
Short summary
Short summary
Herein we compare the mixed-layer data products from differing ceilometer instruments and meteorological sondes.
Kang Sun, Xiong Liu, Guanyu Huang, Gonzalo González Abad, Zhaonan Cai, Kelly Chance, and Kai Yang
Atmos. Meas. Tech., 10, 3677–3695, https://doi.org/10.5194/amt-10-3677-2017, https://doi.org/10.5194/amt-10-3677-2017, 2017
Short summary
Short summary
This study derives on-orbit slit functions from the OMI irradiance spectra. The results differ from the widely used preflight slit functions. The on-orbit changes of OMI slit functions are insignificant over time after accounting for the solar activity. Applying the derived on-orbit slit functions to ozone-profile retrieval shows substantial improvements over the preflight slit functions based on comparisons with ozonesonde validations.
Jay Herman, Robert Evans, Alexander Cede, Nader Abuhassan, Irina Petropavlovskikh, Glenn McConville, Koji Miyagawa, and Brandon Noirot
Atmos. Meas. Tech., 10, 3539–3545, https://doi.org/10.5194/amt-10-3539-2017, https://doi.org/10.5194/amt-10-3539-2017, 2017
Short summary
Short summary
A co-located Pandora Spectrometer Instrument (Pan #034) has been compared to a well-calibrated Dobson spectroradiometer (Dobson #061) in Boulder, Colorado, and with two satellite instruments over a 3-year period. The results show good agreement between Pa n#034 and Dobson #061 and with the satellite data within their statistical uncertainties.
Christopher Chan Miller, Daniel J. Jacob, Eloise A. Marais, Karen Yu, Katherine R. Travis, Patrick S. Kim, Jenny A. Fisher, Lei Zhu, Glenn M. Wolfe, Thomas F. Hanisco, Frank N. Keutsch, Jennifer Kaiser, Kyung-Eun Min, Steven S. Brown, Rebecca A. Washenfelder, Gonzalo González Abad, and Kelly Chance
Atmos. Chem. Phys., 17, 8725–8738, https://doi.org/10.5194/acp-17-8725-2017, https://doi.org/10.5194/acp-17-8725-2017, 2017
Short summary
Short summary
The use of satellite glyoxal observations for estimating isoprene emissions has been limited by knowledge of the glyoxal yield from isoprene. We use SENEX aircraft observations over the southeast US to evaluate glyoxal yields from isoprene in a 3-D atmospheric model. The SENEX observations support a pathway for glyoxal formation in pristine regions that we propose here, which may have implications for improving isoprene emissions estimates from upcoming high-resolution geostationary satellites.
V. M. Erik Schenkeveld, Glen Jaross, Sergey Marchenko, David Haffner, Quintus L. Kleipool, Nico C. Rozemeijer, J. Pepijn Veefkind, and Pieternel F. Levelt
Atmos. Meas. Tech., 10, 1957–1986, https://doi.org/10.5194/amt-10-1957-2017, https://doi.org/10.5194/amt-10-1957-2017, 2017
Short summary
Short summary
The Ozone Monitoring Instrument (OMI) has been flying on NASA’s EOS Aura satellite since July 15, 2004. It has measured the concentration of trace gasses in the atmosphere, like ozone, NO2 and SO2. This article describes the trend in performance and calibration parameters of OMI during 12 years of flight. The degradation of the CCD detectors, solar diffusers, spectral calibration and row anomaly are shown. The instrument shows overall degradation that is better than expected.
Michael P. Barkley, Gonzalo González Abad, Thomas P. Kurosu, Robert Spurr, Sara Torbatian, and Christophe Lerot
Atmos. Chem. Phys., 17, 4687–4709, https://doi.org/10.5194/acp-17-4687-2017, https://doi.org/10.5194/acp-17-4687-2017, 2017
Short summary
Short summary
Using Ozone Monitoring Instrument (OMI) trace gas vertical column observations of NO2, HCHO, SO2, and CHOCHO, we have conducted a robust and detailed time series analysis to assess changes in local air quality for over 1000 locations (focussing on urban, oil refinery, oil port, and power plant targets) over the Middle East for 2005–2014. We find that for many locations in the Middle East, OMI observes a degradation in air quality during this time period.
Hyeong-Ahn Kwon, Rokjin J. Park, Jaein I. Jeong, Seungun Lee, Gonzalo González Abad, Thomas P. Kurosu, Paul I. Palmer, and Kelly Chance
Atmos. Chem. Phys., 17, 4673–4686, https://doi.org/10.5194/acp-17-4673-2017, https://doi.org/10.5194/acp-17-4673-2017, 2017
Short summary
Short summary
A geostationary satellite can measure daytime hourly HCHO columns. Atmospheric conditions such as synoptic meteorology and the presence of other gases and aerosols may affect HCHO measurements. We examine the effects of their temporal variation on the HCHO measurement of a geostationary satellite in East Asia. We find that the hourly variation of other species could be important. Especially the inclusion of hourly aerosol variation in the retrieval could lead to improving HCHO measurements.
Kang Sun, Xiong Liu, Caroline R. Nowlan, Zhaonan Cai, Kelly Chance, Christian Frankenberg, Richard A. M. Lee, Randy Pollock, Robert Rosenberg, and David Crisp
Atmos. Meas. Tech., 10, 939–953, https://doi.org/10.5194/amt-10-939-2017, https://doi.org/10.5194/amt-10-939-2017, 2017
Short summary
Short summary
Accurately characterizing the instrument line shape (ILS) of the Orbiting Carbon Observatory-2 (OCO-2) is challenging and highly important due to its high spectral resolution and requirement for retrieval accuracy. Measured ILS during preflight experiments has been used in the OCO-2 CO2 retrieval. This study derives the on-orbit ILS of OCO-2 using its solar measurements and answers the questions whether on-orbit ILS has changed compared to preflight and whether it varies during the mission.
Julien Chimot, J. Pepijn Veefkind, Tim Vlemmix, Johan F. de Haan, Vassilis Amiridis, Emmanouil Proestakis, Eleni Marinou, and Pieternel F. Levelt
Atmos. Meas. Tech., 10, 783–809, https://doi.org/10.5194/amt-10-783-2017, https://doi.org/10.5194/amt-10-783-2017, 2017
Short summary
Short summary
We have developed artificial neural network algorithms to retrieve aerosol layer height from satellite OMI observations of the 477 nm O2–O2 spectral band. Based on 3-year (2005–2007) cloud-free scenes over north-east Asia, the results show uncertainties of 260–800 m when aerosol optical thickness is larger than 1. These algorithms also enable aerosol optical thickness retrievals by exploring the OMI continuum reflectance. These results may be used for future trace gas retrievals from TROPOMI.
Rachid Abida, Jean-Luc Attié, Laaziz El Amraoui, Philippe Ricaud, William Lahoz, Henk Eskes, Arjo Segers, Lyana Curier, Johan de Haan, Jukka Kujanpää, Albert Oude Nijhuis, Johanna Tamminen, Renske Timmermans, and Pepijn Veefkind
Atmos. Chem. Phys., 17, 1081–1103, https://doi.org/10.5194/acp-17-1081-2017, https://doi.org/10.5194/acp-17-1081-2017, 2017
Short summary
Short summary
A detailed Observing System Simulation Experiment is performed to quantify the impact of future satellite instrument S-5P carbon monoxide (CO) on tropospheric analyses and forecasts. We focus on Europe for the period of northern summer 2003, when there was a severe heat wave episode. S-5P is able to capture the CO from forest fires that occurred in Portugal. Furthermore, our results provide evidence of S-5P CO benefits for monitoring processes contributing to atmospheric pollution.
Xiaoyi Zhao, Vitali Fioletov, Alexander Cede, Jonathan Davies, and Kimberly Strong
Atmos. Meas. Tech., 9, 5747–5761, https://doi.org/10.5194/amt-9-5747-2016, https://doi.org/10.5194/amt-9-5747-2016, 2016
Short summary
Short summary
This study evaluates the performance of the recently developed Pandora spectrometer by comparing it with the Brewer reference triad. The instrument random uncertainty, total column ozone temperature dependence, and ozone air mass dependence have been determined using two Pandora and six Brewer instruments. In general, Pandora and Brewer instruments both have very low random uncertainty and air mass dependence. However, the Brewer has smaller ozone temperature dependence than Pandora.
Lei Zhu, Daniel J. Jacob, Patrick S. Kim, Jenny A. Fisher, Karen Yu, Katherine R. Travis, Loretta J. Mickley, Robert M. Yantosca, Melissa P. Sulprizio, Isabelle De Smedt, Gonzalo González Abad, Kelly Chance, Can Li, Richard Ferrare, Alan Fried, Johnathan W. Hair, Thomas F. Hanisco, Dirk Richter, Amy Jo Scarino, James Walega, Petter Weibring, and Glenn M. Wolfe
Atmos. Chem. Phys., 16, 13477–13490, https://doi.org/10.5194/acp-16-13477-2016, https://doi.org/10.5194/acp-16-13477-2016, 2016
Short summary
Short summary
HCHO column data are widely used as a proxy for VOCs emissions, but validation of the data has been extremely limited. We use accurate aircraft observations to validate and intercompare 6 HCHO retrievals with GEOS-Chem as the intercomparison platform. Retrievals are interconsistent in spatial variability over the SE US and in daily variability, but are biased low by 20–51 %. Our work supports the use of HCHO column as a quantitative proxy for isoprene emission after correction of the low bias.
Huiqun Wang, Gonzalo Gonzalez Abad, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 16, 11379–11393, https://doi.org/10.5194/acp-16-11379-2016, https://doi.org/10.5194/acp-16-11379-2016, 2016
Short summary
Short summary
Water vapor is highly important. The OMI total column water vapor product retrieved using SAO's version 1.0 algorithm agrees well with other reference products over the land but has a low bias over the ocean. The updated OMI water vapor product retrieved using SAO's version 2.1 algorithm largely eliminates the low bias over the ocean, improving the land/ocean consistency and the overall data quality. This dataset can benefit a variety of scientific studies and practical applications.
Cristen Adams, Elise N. Normand, Chris A. McLinden, Adam E. Bourassa, Nicholas D. Lloyd, Douglas A. Degenstein, Nickolay A. Krotkov, Maria Belmonte Rivas, K. Folkert Boersma, and Henk Eskes
Atmos. Meas. Tech., 9, 4103–4122, https://doi.org/10.5194/amt-9-4103-2016, https://doi.org/10.5194/amt-9-4103-2016, 2016
Short summary
Short summary
A new "OMI-minus-OSIRIS" (OmO) prototype dataset for tropospheric NO2 was created by combining information from the OMI satellite instrument, which is sensitive to NO2 in both the troposphere and stratosphere, with information from the OSIRIS satellite instrument, which measures NO2 in the stratosphere. This paper demonstrates that this approach is feasible and could be applied to future geostationary missions.
Vitali E. Fioletov, Chris A. McLinden, Alexander Cede, Jonathan Davies, Cristian Mihele, Stoyka Netcheva, Shao-Meng Li, and Jason O'Brien
Atmos. Meas. Tech., 9, 2961–2976, https://doi.org/10.5194/amt-9-2961-2016, https://doi.org/10.5194/amt-9-2961-2016, 2016
Gonzalo González Abad, Alexander Vasilkov, Colin Seftor, Xiong Liu, and Kelly Chance
Atmos. Meas. Tech., 9, 2797–2812, https://doi.org/10.5194/amt-9-2797-2016, https://doi.org/10.5194/amt-9-2797-2016, 2016
Short summary
Short summary
The multi-spectral possibilities of the OMPS Nadir Mapper instrument are exploited here to perform formaldehyde retrievals. Orbiting the Earth at 824 km, OMPS observes the atmosphere in a time frame similar to instruments belonging to NASA's A-Train constellation, 01:30. We show that OMPS is well suited to measure formaldehyde despite its spectral resolution of 1nm. The comparison of OMPS retrievals with OMI products show good temporal correlation.
Caroline R. Nowlan, Xiong Liu, James W. Leitch, Kelly Chance, Gonzalo González Abad, Cheng Liu, Peter Zoogman, Joshua Cole, Thomas Delker, William Good, Frank Murcray, Lyle Ruppert, Daniel Soo, Melanie B. Follette-Cook, Scott J. Janz, Matthew G. Kowalewski, Christopher P. Loughner, Kenneth E. Pickering, Jay R. Herman, Melinda R. Beaver, Russell W. Long, James J. Szykman, Laura M. Judd, Paul Kelley, Winston T. Luke, Xinrong Ren, and Jassim A. Al-Saadi
Atmos. Meas. Tech., 9, 2647–2668, https://doi.org/10.5194/amt-9-2647-2016, https://doi.org/10.5194/amt-9-2647-2016, 2016
Short summary
Short summary
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a remote sensing airborne instrument developed in support of future air quality satellite missions that will operate from geostationary orbit. GeoTASO flew in its first intensive field campaign during the DISCOVER-AQ 2013 Earth Venture Mission over Houston, Texas. This paper introduces the instrument and data analysis, and presents GeoTASO's first observations of NO2 at 250 m x 250 m spatial resolution.
Ilias Fountoulakis, Alberto Redondas, Alkiviadis F. Bais, Juan José Rodriguez-Franco, Konstantinos Fragkos, and Alexander Cede
Atmos. Meas. Tech., 9, 1799–1816, https://doi.org/10.5194/amt-9-1799-2016, https://doi.org/10.5194/amt-9-1799-2016, 2016
Short summary
Short summary
The dead time (DT) is characteristic for each Brewer spectrophotometer and non-proper correction of the raw data for its effect may lead to important errors in UV, AOD and TOC measurements. Quantitative estimation of the DT-related uncertainties shown that a 2 ns error in the DT may lead to errors greater than 1 % in TOC. The operational algorithm for the DT calculation and correction is validated and the development of new methods for the estimation of DT is described.
Christopher Chan Miller, Daniel J. Jacob, Gonzalo González Abad, and Kelly Chance
Atmos. Chem. Phys., 16, 4631–4639, https://doi.org/10.5194/acp-16-4631-2016, https://doi.org/10.5194/acp-16-4631-2016, 2016
Short summary
Short summary
Volatile organic compounds (VOCs) are important precursors for photochemical smog.
Glyoxal is an organic compound produced in the atmosphere from reactions of larger VOCs. OMI satellite observations of glyoxal show a large hotspot over the Pearl River delta. The hotspot can be explained by industrial paint and solvent emissions of aromatic VOCs. Our work shows OMI observations are consistent with current VOC emissions estimates, whereas previous work has suggested large underestimates.
K. F. Boersma, G. C. M. Vinken, and H. J. Eskes
Geosci. Model Dev., 9, 875–898, https://doi.org/10.5194/gmd-9-875-2016, https://doi.org/10.5194/gmd-9-875-2016, 2016
Short summary
Short summary
Satellite measurements of pollutants and greenhouse gases are useful to test and improve atmospheric models. But this requires that modellers account for the spatial and temporal representativeness and the vertical sensitivity of the satellite measurements. This paper provides guidelines on how to carry out a faithful model-satellite comparison for species such as nitrogen dioxide, sulfur dioxide, and formaldehyde that play a key role in air pollution studies.
A. Wagner, A.-M. Blechschmidt, I. Bouarar, E.-G. Brunke, C. Clerbaux, M. Cupeiro, P. Cristofanelli, H. Eskes, J. Flemming, H. Flentje, M. George, S. Gilge, A. Hilboll, A. Inness, J. Kapsomenakis, A. Richter, L. Ries, W. Spangl, O. Stein, R. Weller, and C. Zerefos
Atmos. Chem. Phys., 15, 14005–14030, https://doi.org/10.5194/acp-15-14005-2015, https://doi.org/10.5194/acp-15-14005-2015, 2015
Short summary
Short summary
The Monitoring Atmospheric Composition and Climate project (MACC) operationally produces global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the model to simulate concentrations of reactive gases (carbon monoxide, nitrogen dioxide and ozone) between 2009 and 2012. The model reproduced reactive gas concentrations with consistent quality, however, with a seasonally dependent bias compared to surface and satellite observations.
M. Belmonte Rivas, P. Veefkind, H. Eskes, and P. Levelt
Atmos. Chem. Phys., 15, 13519–13553, https://doi.org/10.5194/acp-15-13519-2015, https://doi.org/10.5194/acp-15-13519-2015, 2015
H. Eskes, V. Huijnen, A. Arola, A. Benedictow, A.-M. Blechschmidt, E. Botek, O. Boucher, I. Bouarar, S. Chabrillat, E. Cuevas, R. Engelen, H. Flentje, A. Gaudel, J. Griesfeller, L. Jones, J. Kapsomenakis, E. Katragkou, S. Kinne, B. Langerock, M. Razinger, A. Richter, M. Schultz, M. Schulz, N. Sudarchikova, V. Thouret, M. Vrekoussis, A. Wagner, and C. Zerefos
Geosci. Model Dev., 8, 3523–3543, https://doi.org/10.5194/gmd-8-3523-2015, https://doi.org/10.5194/gmd-8-3523-2015, 2015
Short summary
Short summary
The MACC project is preparing the operational atmosphere service of the European Copernicus Programme, and uses data assimilation to combine atmospheric models with available observations. Our paper provides an overview of the aerosol and trace gas validation activity of MACC. Topics are the validation requirements, the measurement data, the assimilation systems, the upgrade procedure, operational aspects and the scoring methods. A summary is provided of recent results, including special events.
W. Hewson, M. P. Barkley, G. Gonzalez Abad, H. Bösch, T. Kurosu, R. Spurr, and L. G. Tilstra
Atmos. Meas. Tech., 8, 4055–4074, https://doi.org/10.5194/amt-8-4055-2015, https://doi.org/10.5194/amt-8-4055-2015, 2015
Short summary
Short summary
This work presents the air mass factor (AMF) algorithm in use at the University of Leicester, which introduces scene-specific variables into a per-observation full radiative transfer AMF calculation, including increasing spatial resolution of key environmental parameter databases, input variable area weighting, instrument-specific scattering weight calculation, and inclusion of an ozone vertical profile climatology.
E. Katragkou, P. Zanis, A. Tsikerdekis, J. Kapsomenakis, D. Melas, H. Eskes, J. Flemming, V. Huijnen, A. Inness, M. G. Schultz, O. Stein, and C. S. Zerefos
Geosci. Model Dev., 8, 2299–2314, https://doi.org/10.5194/gmd-8-2299-2015, https://doi.org/10.5194/gmd-8-2299-2015, 2015
Short summary
Short summary
This work is an extended evaluation of near-surface ozone as part of the global reanalysis of atmospheric composition, produced within the European-funded project MACC (Monitoring Atmospheric Composition and Climate). It includes an evaluation over the period 2003-2012 and provides an overall assessment of the modelling system performance with respect to near surface ozone for specific European subregions.
R. J. van der A, M. A. F. Allaart, and H. J. Eskes
Atmos. Meas. Tech., 8, 3021–3035, https://doi.org/10.5194/amt-8-3021-2015, https://doi.org/10.5194/amt-8-3021-2015, 2015
Short summary
Short summary
The ozone multi-sensor reanalysis (MSR2) is a multi-decadal ozone column analysis for the period 1970-2012 based on all available ozone column satellite datasets, surface Brewer-Dobson observations and a data assimilation technique with detailed error modelling. The latest total ozone retrievals of 15 different satellite instruments are used: BUV-Nimbus4, TOMS-Nimbus7, TOMS-EP, SBUV-7, -9, -11, -14, -16, -17, -18, -19, GOME, SCIAMACHY, OMI and GOME-2.
K. Miyazaki, H. J. Eskes, and K. Sudo
Atmos. Chem. Phys., 15, 8315–8348, https://doi.org/10.5194/acp-15-8315-2015, https://doi.org/10.5194/acp-15-8315-2015, 2015
Short summary
Short summary
This paper reports on an 8-year reanalysis of tropospheric chemistry based on an assimilation of multiple satellite-derived data sets. The reanalysis performed well on regional and global scales and for seasonal and interannual variations. The simultaneous assimilation of multiple-species data, involving the optimisation of both concentration and emission fields, provides unique information on year-to-year variations in the atmospheric environment.
A. Inness, A.-M. Blechschmidt, I. Bouarar, S. Chabrillat, M. Crepulja, R. J. Engelen, H. Eskes, J. Flemming, A. Gaudel, F. Hendrick, V. Huijnen, L. Jones, J. Kapsomenakis, E. Katragkou, A. Keppens, B. Langerock, M. de Mazière, D. Melas, M. Parrington, V. H. Peuch, M. Razinger, A. Richter, M. G. Schultz, M. Suttie, V. Thouret, M. Vrekoussis, A. Wagner, and C. Zerefos
Atmos. Chem. Phys., 15, 5275–5303, https://doi.org/10.5194/acp-15-5275-2015, https://doi.org/10.5194/acp-15-5275-2015, 2015
Short summary
Short summary
The paper presents results from data assimilation studies with the new Composition-IFS model developed in the MACC project. This system was used in MACC to produce daily analyses and 5-day forecasts of atmospheric composition and is now run daily in the EU’s Copernicus Atmosphere Monitoring Service. The paper looks at the quality of the CO, O3 and NO2 analysis fields obtained with this system, comparing them against observations, a control run and an older version of the model.
S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir
Atmos. Meas. Tech., 8, 1073–1087, https://doi.org/10.5194/amt-8-1073-2015, https://doi.org/10.5194/amt-8-1073-2015, 2015
Short summary
Short summary
A water vapor lidar has been designed and tested which has the potential to enable a national-scale network. The system is low-maintenance, low-cost, eye-safe, and provides continuous profiles of water vapor with complete coverage, including periods of daytime bright clouds, from 300m above ground level to 4km with 150m nominal vertical resolution and 1 min temporal resolution. The sensor may be useful in improving our understanding of the distribution of atmospheric water vapor.
K. Lefever, R. van der A, F. Baier, Y. Christophe, Q. Errera, H. Eskes, J. Flemming, A. Inness, L. Jones, J.-C. Lambert, B. Langerock, M. G. Schultz, O. Stein, A. Wagner, and S. Chabrillat
Atmos. Chem. Phys., 15, 2269–2293, https://doi.org/10.5194/acp-15-2269-2015, https://doi.org/10.5194/acp-15-2269-2015, 2015
Short summary
Short summary
We validate and discuss the analyses of stratospheric ozone delivered in near-real time between 2009 and 2012 by four different data assimilation systems: IFS-MOZART, BASCOE, SACADA and TM3DAM. It is shown that the characteristics of the assimilation systems are much less important than those of the assimilated data sets. A correct representation of the vertical distribution of ozone requires satellite observations which are well resolved vertically and extend into the lowermost stratosphere.
G. González Abad, X. Liu, K. Chance, H. Wang, T. P. Kurosu, and R. Suleiman
Atmos. Meas. Tech., 8, 19–32, https://doi.org/10.5194/amt-8-19-2015, https://doi.org/10.5194/amt-8-19-2015, 2015
Short summary
Short summary
We present and discuss the Smithsonian Astrophysical Observatory (SAO) formaldehyde retrieval algorithm for the Ozone Monitoring Instrument (OMI), which is the operational retrieval for NASA OMI H2CO.
A. T. J. de Laat, I. Aben, M. Deeter, P. Nédélec, H. Eskes, J.-L. Attié, P. Ricaud, R. Abida, L. El Amraoui, and J. Landgraf
Atmos. Meas. Tech., 7, 3783–3799, https://doi.org/10.5194/amt-7-3783-2014, https://doi.org/10.5194/amt-7-3783-2014, 2014
L. N. Lamsal, N. A. Krotkov, E. A. Celarier, W. H. Swartz, K. E. Pickering, E. J. Bucsela, J. F. Gleason, R. V. Martin, S. Philip, H. Irie, A. Cede, J. Herman, A. Weinheimer, J. J. Szykman, and T. N. Knepp
Atmos. Chem. Phys., 14, 11587–11609, https://doi.org/10.5194/acp-14-11587-2014, https://doi.org/10.5194/acp-14-11587-2014, 2014
M. Belmonte Rivas, P. Veefkind, F. Boersma, P. Levelt, H. Eskes, and J. Gille
Atmos. Meas. Tech., 7, 2203–2225, https://doi.org/10.5194/amt-7-2203-2014, https://doi.org/10.5194/amt-7-2203-2014, 2014
H. Wang, X. Liu, K. Chance, G. González Abad, and C. Chan Miller
Atmos. Meas. Tech., 7, 1901–1913, https://doi.org/10.5194/amt-7-1901-2014, https://doi.org/10.5194/amt-7-1901-2014, 2014
K. Miyazaki, H. J. Eskes, K. Sudo, and C. Zhang
Atmos. Chem. Phys., 14, 3277–3305, https://doi.org/10.5194/acp-14-3277-2014, https://doi.org/10.5194/acp-14-3277-2014, 2014
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Satellite data validation: a parametrization of the natural variability of atmospheric mixing ratios
Investigation of spaceborne trace gas products over St Petersburg and Yekaterinburg, Russia, by using COllaborative Column Carbon Observing Network (COCCON) observations
A comparison of the impact of TROPOMI and OMI tropospheric NO2 on global chemical data assimilation
Impact of 3D cloud structures on the atmospheric trace gas products from UV–Vis sounders – Part 1: Synthetic dataset for validation of trace gas retrieval algorithms
Variations of Arctic winter ozone from the LIMS Level 3 dataset
Retrieval of tropospheric aerosol, NO2, and HCHO vertical profiles from MAX-DOAS observations over Thessaloniki, Greece: intercomparison and validation of two inversion algorithms
Assessment of the quality of ACE-FTS stratospheric ozone data
Validation and error estimation of AIRS MUSES CO profiles with HIPPO, ATom, and NOAA GML aircraft observations
Dealing with spatial heterogeneity in pointwise-to-gridded- data comparisons
Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: methodology and validation
Intercomparison of CO measurements from TROPOMI, ACE-FTS, and a high-Arctic ground-based Fourier transform spectrometer
Assessing the feasibility of using a neural network to filter Orbiting Carbon Observatory 2 (OCO-2) retrievals at northern high latitudes
TROPOMI tropospheric ozone column data: geophysical assessment and comparison to ozonesondes, GOME-2B and OMI
Ground-based validation of the MetopA and B GOME-2 OClO measurements
Satellite measurements of peroxyacetyl nitrate from the Cross-Track Infrared Sounder: Comparison with ATom aircraft measurements
The SPARC water vapor assessment II: Assessment of satellite measurements of upper tropospheric water vapor
Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations
Evaluation of the coupled high-resolution atmospheric chemistry model system MECO(n) using in situ and MAX-DOAS NO2 measurements
Total ozone column intercomparison of Brewers, Dobsons, and BTS-Solar at Hohenpeißenberg and Davos in 2019/2020
A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means
Quality assessment of Dobson spectrophotometers for ozone column measurements before and after automation at Arosa and Davos
Systematic comparison of vectorial spherical radiative transfer models in limb scattering geometry
Evaluation of the new DWD ozone and temperature lidar during the Hohenpeißenberg Ozone Profiling Study (HOPS) and comparison of results with previous NDACC campaigns
A method for random uncertainties validation and probing the natural variability with application to TROPOMI on board Sentinel-5P total ozone measurements
The world Brewer reference triad – updated performance assessment and new double triad
Intercomparison of arctic XH2O observations from three ground-based Fourier transform infrared networks and application for satellite validation
Verification of the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS) ozone algorithms based on retrieved daytime and night-time ozone
Intercomparison of Total Carbon Column Observing Network (TCCON) data from two Fourier transform spectrometers at Lauder, New Zealand
Model estimations of geophysical variability between satellite measurements of ozone profiles
Multiscale observations of NH3 around Toronto, Canada
Assessment of the TROPOMI tropospheric NO2 product based on airborne APEX observations
Formaldehyde total column densities over Mexico City: comparison between multi-axis differential optical absorption spectroscopy and solar-absorption Fourier transform infrared measurements
Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks
Evaluation of single-footprint AIRS CH4 profile retrieval uncertainties using aircraft profile measurements
Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign
Validation of SMILES HCl profiles over a wide range from the stratosphere to the lower thermosphere
Comparison of formaldehyde tropospheric columns in Australia and New Zealand using MAX-DOAS, FTIR and TROPOMI
Validation of tropospheric NO2 column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations
Intercomparison and evaluation of ground- and satellite-based stratospheric ozone and temperature profiles above Observatoire de Haute-Provence during the Lidar Validation NDACC Experiment (LAVANDE)
Satellite validation strategy assessments based on the AROMAT campaigns
A tropopause-related climatological a priori profile for IASI-SOFRID ozone retrievals: improvements and validation
Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels
Validation of XCO2 and XCH4 retrieved from a portable Fourier transform spectrometer with those from in situ profiles from aircraft-borne instruments
Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign
Quality controls, bias, and seasonality of CO2 columns in the boreal forest with Orbiting Carbon Observatory-2, Total Carbon Column Observing Network, and EM27/SUN measurements
Recovery and validation of Odin/SMR long-term measurements of mesospheric carbon monoxide
1.5 years of TROPOMI CO measurements: comparisons to MOPITT and ATom
Intercomparison of atmospheric CO2 and CH4 abundances on regional scales in boreal areas using Copernicus Atmosphere Monitoring Service (CAMS) analysis, COllaborative Carbon Column Observing Network (COCCON) spectrometers, and Sentinel-5 Precursor satellite observations
In-orbit Earth reflectance validation of TROPOMI on board the Sentinel-5 Precursor satellite
Methane and nitrous oxide from ground-based FTIR at Addis Ababa: observations, error analysis, and comparison with satellite data
Alexandra Laeng, Thomas von Clarmann, Quentin Errera, Udo Grabowski, and Shawn Honomichl
Atmos. Meas. Tech., 15, 2407–2416, https://doi.org/10.5194/amt-15-2407-2022, https://doi.org/10.5194/amt-15-2407-2022, 2022
Short summary
Short summary
In validation exercises, a universal excuse used to explain the residual discrepancy between the data is the natural atmospheric variability due to imperfect co-locations. This work is the first attempt to quantify this atmospheric variability for a large sample of atmospheric constituents and to provide the user with a tool to substract the natural atmospheric variability portion from the residual variability.
Carlos Alberti, Qiansi Tu, Frank Hase, Maria V. Makarova, Konstantin Gribanov, Stefani C. Foka, Vyacheslav Zakharov, Thomas Blumenstock, Michael Buchwitz, Christopher Diekmann, Benjamin Ertl, Matthias M. Frey, Hamud Kh. Imhasin, Dmitry V. Ionov, Farahnaz Khosrawi, Sergey I. Osipov, Maximilian Reuter, Matthias Schneider, and Thorsten Warneke
Atmos. Meas. Tech., 15, 2199–2229, https://doi.org/10.5194/amt-15-2199-2022, https://doi.org/10.5194/amt-15-2199-2022, 2022
Short summary
Short summary
Satellite and ground-based observations at high latitudes are much sparser than at low or mid latitudes, which makes direct coincident comparisons between remote-sensing observations more difficult. Therefore, a method of scaling continuous CAMS model data to the ground-based observations is developed and used for creating virtual COCCON observations. These adjusted CAMS data are then used for satellite inter-comparison, showing good agreement in both Peterhof and Yekaterinburg cities.
Takashi Sekiya, Kazuyuki Miyazaki, Henk Eskes, Kengo Sudo, Masayuki Takigawa, and Yugo Kanaya
Atmos. Meas. Tech., 15, 1703–1728, https://doi.org/10.5194/amt-15-1703-2022, https://doi.org/10.5194/amt-15-1703-2022, 2022
Short summary
Short summary
This study gives a systematic comparison of TROPOMI version 1.2 and OMI QA4ECV tropospheric NO2 column through global chemical data assimilation (DA) integration for April–May 2018. DA performance is controlled by measurement sensitivities, retrieval errors, and coverage. Due to reduced errors in TROPOMI, agreements against assimilated and independent observations were improved by TROPOMI DA compared to OMI DA. These results demonstrate that TROPOMI DA improves global analyses of NO2 and ozone.
Claudia Emde, Huan Yu, Arve Kylling, Michel van Roozendael, Kerstin Stebel, Ben Veihelmann, and Bernhard Mayer
Atmos. Meas. Tech., 15, 1587–1608, https://doi.org/10.5194/amt-15-1587-2022, https://doi.org/10.5194/amt-15-1587-2022, 2022
Short summary
Short summary
Retrievals of trace gas concentrations from satellite observations can be affected by clouds in the vicinity, either by shadowing or by scattering of radiation from clouds in the clear region. We used a Monte Carlo radiative transfer model to generate synthetic satellite observations, which we used to test retrieval algorithms and to quantify the error of retrieved NO2 vertical column density due to cloud scattering.
Ellis Remsberg, Murali Natarajan, and Ernest Hilsenrath
Atmos. Meas. Tech., 15, 1521–1535, https://doi.org/10.5194/amt-15-1521-2022, https://doi.org/10.5194/amt-15-1521-2022, 2022
Short summary
Short summary
Ozone (O3) is an excellent tracer of atmospheric transport processes in the middle atmosphere during Arctic winter. The Nimbus 7 LIMS O3 profiles of late October 1978 through May 1979 now extend to the upper mesosphere via its Version 6 (V6) algorithm. We describe the generation of zonal Fourier coefficients from the profiles, followed by their gridding to daily synoptic maps of O3. We then present several examples of how V6 O3 varies in the upper stratosphere and mesosphere during winter.
Dimitris Karagkiozidis, Martina Michaela Friedrich, Steffen Beirle, Alkiviadis Bais, François Hendrick, Kalliopi Artemis Voudouri, Ilias Fountoulakis, Angelos Karanikolas, Paraskevi Tzoumaka, Michel Van Roozendael, Dimitris Balis, and Thomas Wagner
Atmos. Meas. Tech., 15, 1269–1301, https://doi.org/10.5194/amt-15-1269-2022, https://doi.org/10.5194/amt-15-1269-2022, 2022
Short summary
Short summary
In this study we focus on the retrieval of aerosol, NO2, and HCHO vertical profiles from multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations for the first time over Thessaloniki, Greece. We use two independent inversion algorithms for the profile retrievals. We evaluate their performance, we intercompare their results, and we validate their products with ancillary data, measured by other co-located reference instruments.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Adam E. Bourassa, Doug A. Degenstein, Lucien Froidevaux, C. Thomas McElroy, Donal Murtagh, James M. Russell III, and Jiansheng Zou
Atmos. Meas. Tech., 15, 1233–1249, https://doi.org/10.5194/amt-15-1233-2022, https://doi.org/10.5194/amt-15-1233-2022, 2022
Short summary
Short summary
This study analyzes the quality of two versions (v3.6 and v4.1) of ozone concentration measurements from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), by comparing with data from five satellite instruments between 2004 and 2020. It was found that although the v3.6 data exhibit a better agreement than v4.1 with respect to the other instruments, v4.1 exhibits much better stability over time than v3.6. The stability of v4.1 makes it suitable for ozone trend studies.
Jennifer D. Hegarty, Karen E. Cady-Pereira, Vivienne H. Payne, Susan S. Kulawik, John R. Worden, Valentin Kantchev, Helen M. Worden, Kathryn McKain, Jasna V. Pittman, Róisín Commane, Bruce C. Daube Jr., and Eric A. Kort
Atmos. Meas. Tech., 15, 205–223, https://doi.org/10.5194/amt-15-205-2022, https://doi.org/10.5194/amt-15-205-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is produced by combustion of substances such as fossil fuels and plays an important role in atmospheric pollution and climate. We evaluated estimates of atmospheric CO derived from outgoing radiation measurements of the Atmospheric Infrared Sounder (AIRS) on a satellite orbiting the Earth against CO measurements from aircraft to show that these satellite measurements are reliable for continuous global monitoring of atmospheric CO concentrations.
Amir H. Souri, Kelly Chance, Kang Sun, Xiong Liu, and Matthew S. Johnson
Atmos. Meas. Tech., 15, 41–59, https://doi.org/10.5194/amt-15-41-2022, https://doi.org/10.5194/amt-15-41-2022, 2022
Short summary
Short summary
The central component of satellite and model validation is pointwise measurements. A point is an element of space, whereas satellite (model) pixels represent an averaged area. These two datasets are inherently different. We leveraged some geostatistical tools to transform discrete points to gridded data with quantified uncertainty, comparable to satellite footprint (and response functions). This in part alleviated some complications concerning point–pixel comparisons.
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021, https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary
Short summary
Satellite-derived NOx emissions from biomass burning are estimated with TROPOMI observations. Two common emission estimation methods are applied, and sensitivity tests with model output were performed to determine the accuracy of these methods. The effect of smoke aerosols on TROPOMI NO2 columns is estimated and compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America.
Tyler Wizenberg, Kimberly Strong, Kaley Walker, Erik Lutsch, Tobias Borsdorff, and Jochen Landgraf
Atmos. Meas. Tech., 14, 7707–7728, https://doi.org/10.5194/amt-14-7707-2021, https://doi.org/10.5194/amt-14-7707-2021, 2021
Short summary
Short summary
CO is an important atmospheric gas that influences both air quality and the climate. Here, we compare CO measurements from TROPOMI with those from ACE-FTS and an Arctic ground-based FTS at Eureka, Nunavut, to further characterize the accuracy of TROPOMI measurements. CO columns from the instruments agree well but show larger differences at high latitudes. Despite this, the results fall within the TROPOMI accuracy target, indicating good data quality at high latitudes.
Joseph Mendonca, Ray Nassar, Christopher W. O'Dell, Rigel Kivi, Isamu Morino, Justus Notholt, Christof Petri, Kimberly Strong, and Debra Wunch
Atmos. Meas. Tech., 14, 7511–7524, https://doi.org/10.5194/amt-14-7511-2021, https://doi.org/10.5194/amt-14-7511-2021, 2021
Short summary
Short summary
Machine learning has become an important tool for pattern recognition in many applications. In this study, we used a neural network to improve the data quality of OCO-2 measurements made at northern high latitudes. The neural network was trained and used as a binary classifier to filter out bad OCO-2 measurements in order to increase the accuracy and precision of OCO-2 XCO2 measurements in the Boreal and Arctic regions.
Daan Hubert, Klaus-Peter Heue, Jean-Christopher Lambert, Tijl Verhoelst, Marc Allaart, Steven Compernolle, Patrick D. Cullis, Angelika Dehn, Christian Félix, Bryan J. Johnson, Arno Keppens, Debra E. Kollonige, Christophe Lerot, Diego Loyola, Matakite Maata, Sukarni Mitro, Maznorizan Mohamad, Ankie Piters, Fabian Romahn, Henry B. Selkirk, Francisco R. da Silva, Ryan M. Stauffer, Anne M. Thompson, J. Pepijn Veefkind, Holger Vömel, Jacquelyn C. Witte, and Claus Zehner
Atmos. Meas. Tech., 14, 7405–7433, https://doi.org/10.5194/amt-14-7405-2021, https://doi.org/10.5194/amt-14-7405-2021, 2021
Short summary
Short summary
We assess the first 2 years of TROPOMI tropical tropospheric ozone column data. Comparisons to reference measurements by ozonesonde and satellite sensors show that TROPOMI bias (−0.1 to +2.3 DU) and precision (1.5 to 2.5 DU) meet mission requirements. Potential causes of bias and its spatio-temporal structure are discussed, as well as ways to identify sampling errors. Our analysis of known geophysical patterns demonstrates the improved performance of TROPOMI with respect to its predecessors.
Gaia Pinardi, Michel Van Roozendael, François Hendrick, Andreas Richter, Pieter Valks, Ramina Alwarda, Kristof Bognar, Udo Frieß, José Granville, Myojeong Gu, Paul Johnston, Cristina Prados-Roman, Richard Querel, Kimberly Strong, Thomas Wagner, Folkard Wittrock, and Margarita Yela Gonzalez
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-356, https://doi.org/10.5194/amt-2021-356, 2021
Revised manuscript accepted for AMT
Short summary
Short summary
We report on the GOME-2A and GOME-2B OClO datasets (2007 to 2016, from the EUMETSAT’s AC SAF) validation using data from 9 NDACC Zenith-Scattered-Light DOAS (ZSL-DOAS) instruments distributed in both the Arctic and Antarctic. Specific sensitivity tests are performed on the ground-based data to estimate the impact of the different OClO DOAS analysis settings and their typical errors. Good agreement is found, both for the inter-annual variability and the overall OClO seasonal behaviour.
Vivienne H. Payne, Susan S. Kulawik, Emily V. Fischer, Jared F. Brewer, L. Gregory Huey, Kazuyuki Miyazaki, John R. Worden, Kevin W. Bowman, Eric J. Hintsa, Fred Moore, James W. Elkins, and Julieta Juncosa Calahorrano
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-353, https://doi.org/10.5194/amt-2021-353, 2021
Revised manuscript accepted for AMT
Short summary
Short summary
We compare new satellite measurements of peroxyacetyl nitrate (PAN) with reference aircraft measurements from two different instruments flown on the same platform. While there is a systematic difference between the two aircraft datasets, both show the same large-scale distribution of PAN and the discrepancy between aircraft datasets is small compared to the satellite uncertainties. The satellite measurements show skill in capturing large-scale variations in PAN.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Chistopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-300, https://doi.org/10.5194/amt-2021-300, 2021
Revised manuscript accepted for AMT
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000 and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Mahesh Kumar Sha, Bavo Langerock, Jean-François L. Blavier, Thomas Blumenstock, Tobias Borsdorff, Matthias Buschmann, Angelika Dehn, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Michel Grutter, James W. Hannigan, Frank Hase, Pauli Heikkinen, Christian Hermans, Laura T. Iraci, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Nicolas Kumps, Jochen Landgraf, Alba Lorente, Emmanuel Mahieu, Maria V. Makarova, Johan Mellqvist, Jean-Marc Metzger, Isamu Morino, Tomoo Nagahama, Justus Notholt, Hirofumi Ohyama, Ivan Ortega, Mathias Palm, Christof Petri, David F. Pollard, Markus Rettinger, John Robinson, Sébastien Roche, Coleen M. Roehl, Amelie N. Röhling, Constantina Rousogenous, Matthias Schneider, Kei Shiomi, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, Osamu Uchino, Voltaire A. Velazco, Corinne Vigouroux, Mihalis Vrekoussis, Pucai Wang, Thorsten Warneke, Tyler Wizenberg, Debra Wunch, Shoma Yamanouchi, Yang Yang, and Minqiang Zhou
Atmos. Meas. Tech., 14, 6249–6304, https://doi.org/10.5194/amt-14-6249-2021, https://doi.org/10.5194/amt-14-6249-2021, 2021
Short summary
Short summary
This paper presents, for the first time, Sentinel-5 Precursor methane and carbon monoxide validation results covering a period from November 2017 to September 2020. For this study, we used global TCCON and NDACC-IRWG network data covering a wide range of atmospheric and surface conditions across different terrains. We also show the influence of a priori alignment, smoothing uncertainties and the sensitivity of the validation results towards the application of advanced co-location criteria.
Vinod Kumar, Julia Remmers, Steffen Beirle, Joachim Fallmann, Astrid Kerkweg, Jos Lelieveld, Mariano Mertens, Andrea Pozzer, Benedikt Steil, Marc Barra, Holger Tost, and Thomas Wagner
Atmos. Meas. Tech., 14, 5241–5269, https://doi.org/10.5194/amt-14-5241-2021, https://doi.org/10.5194/amt-14-5241-2021, 2021
Short summary
Short summary
We present high-resolution regional atmospheric chemistry model simulations focused around Germany. We highlight the importance of spatial resolution of the model itself as well as the input emissions inventory and short-scale temporal variability of emissions for simulations. We propose a consistent approach for evaluating the simulated vertical distribution of NO2 using MAX-DOAS measurements while also considering its spatial sensitivity volume and change in sensitivity within this volume.
Ralf Zuber, Ulf Köhler, Luca Egli, Mario Ribnitzky, Wolfgang Steinbrecht, and Julian Gröbner
Atmos. Meas. Tech., 14, 4915–4928, https://doi.org/10.5194/amt-14-4915-2021, https://doi.org/10.5194/amt-14-4915-2021, 2021
Short summary
Short summary
We validated two BTS-based systems in a longer-term TOC analysis in the 2019/2020 campaign at Hohenpeißenberg and Davos. The results showed a deviation of the BTS-Solar to Brewers of < 0.1 % with a k = 2 of < 1.5 %. Koherent showed a deviation of 1.7 % with a k = 2 of 2.7 %. Resultingly, the BTS-Solar performance is comparable to Brewers in Hohenpeißenberg. Koherent shows a seasonal variation in Davos due to the sensitivity of its TOC retrieval algorithm to stratospheric temperature.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
René Stübi, Herbert Schill, Eliane Maillard Barras, Jörg Klausen, and Alexander Haefele
Atmos. Meas. Tech., 14, 4203–4217, https://doi.org/10.5194/amt-14-4203-2021, https://doi.org/10.5194/amt-14-4203-2021, 2021
Short summary
Short summary
Total ozone column has been measured since 1926 in the Swiss Alps station Arosa. These worldwide series are based on Dobson sun spectrophotometers. To assure the continuity of these series, a two-stage project was realized at MeteoSwiss: first, Dobson instruments were automated, and then parallel measurements between Arosa and a nearby site in Davos were carried out. The analysis of the data of the manual-to-automated transition and coincident data between the two sites are presented here.
Daniel Zawada, Ghislain Franssens, Robert Loughman, Antti Mikkonen, Alexei Rozanov, Claudia Emde, Adam Bourassa, Seth Dueck, Hannakaisa Lindqvist, Didier Ramon, Vladimir Rozanov, Emmanuel Dekemper, Erkki Kyrölä, John P. Burrows, Didier Fussen, and Doug Degenstein
Atmos. Meas. Tech., 14, 3953–3972, https://doi.org/10.5194/amt-14-3953-2021, https://doi.org/10.5194/amt-14-3953-2021, 2021
Short summary
Short summary
Satellite measurements of atmospheric composition often rely on computer tools known as radiative transfer models to model the propagation of sunlight within the atmosphere. Here we have performed a detailed inter-comparison of seven different radiative transfer models in a variety of conditions. We have found that the models agree remarkably well, at a level better than previously reported. This result provides confidence in our understanding of atmospheric radiative transfer.
Robin Wing, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Thomas J. McGee, John T. Sullivan, Sergey Khaykin, Grant Sumnicht, and Laurence Twigg
Atmos. Meas. Tech., 14, 3773–3794, https://doi.org/10.5194/amt-14-3773-2021, https://doi.org/10.5194/amt-14-3773-2021, 2021
Short summary
Short summary
This paper is a validation study of the newly installed ozone and temperature lidar at Hohenpeißenberg, Germany. As part of the Network for the Detection of Atmospheric Composition Change (NDACC), lidar stations are routinely compared against a travelling reference lidar operated by NASA. We have also attempted to assess potential biases in the reference lidar by comparing the results of this validation campaign with a previous campaign at the Observatoire de Haute-Provence, France.
Viktoria F. Sofieva, Hei Shing Lee, Johanna Tamminen, Christophe Lerot, Fabian Romahn, and Diego G. Loyola
Atmos. Meas. Tech., 14, 2993–3002, https://doi.org/10.5194/amt-14-2993-2021, https://doi.org/10.5194/amt-14-2993-2021, 2021
Short summary
Short summary
Our paper discusses the structure function method, which allows validation of random uncertainties in the data and, at the same time, probing of the small-scale natural variability. We applied this method to the clear-sky total ozone measurements by TROPOMI Sentinel-5P satellite instrument and found that the TROPOMI random error estimation is adequate. The discussed method is a powerful tool, which can be used in various applications.
Xiaoyi Zhao, Vitali Fioletov, Michael Brohart, Volodya Savastiouk, Ihab Abboud, Akira Ogyu, Jonathan Davies, Reno Sit, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, Moritz Müller, Debora Griffin, and Chris McLinden
Atmos. Meas. Tech., 14, 2261–2283, https://doi.org/10.5194/amt-14-2261-2021, https://doi.org/10.5194/amt-14-2261-2021, 2021
Short summary
Short summary
The Brewer spectrophotometer is one of the main instruments for measurements of atmospheric total column ozone. The global Brewer network largely relies on the world reference instruments (the Brewer triad) operated by Environment and Climate Change Canada since the early 1980s. This study provides an updated assessment (1999–2019) of the reference instrument performance, in terms of random uncertainties and long-term stability.
Qiansi Tu, Frank Hase, Thomas Blumenstock, Matthias Schneider, Andreas Schneider, Rigel Kivi, Pauli Heikkinen, Benjamin Ertl, Christopher Diekmann, Farahnaz Khosrawi, Michael Sommer, Tobias Borsdorff, and Uwe Raffalski
Atmos. Meas. Tech., 14, 1993–2011, https://doi.org/10.5194/amt-14-1993-2021, https://doi.org/10.5194/amt-14-1993-2021, 2021
Short summary
Short summary
We compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from the COllaborative Carbon Column Observing Network (COCCON) with two co-located ground-based spectrometers as references at two boreal sites. Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This is the first published study applying COCCON for MUSICA IASI and TROPOMI validation.
Wannan Wang, Tianhai Cheng, Ronald J. van der A, Jos de Laat, and Jason E. Williams
Atmos. Meas. Tech., 14, 1673–1687, https://doi.org/10.5194/amt-14-1673-2021, https://doi.org/10.5194/amt-14-1673-2021, 2021
Short summary
Short summary
This paper is an evaluation of the AIRS and MLS ozone (O3) algorithms via comparison with daytime and night-time O3 datasets. Results show that further refinements of the AIRS O3 algorithm are required for better surface emissivity retrievals and that cloud cover is another problem that needs to be solved. An inconsistency is found in the
AscDescModeflag of the MLS v4.20 standard O3 product for 90–60° S and 60–90° N, resulting in inconsistent O3 profiles in these regions before May 2015.
David F. Pollard, John Robinson, Hisako Shiona, and Dan Smale
Atmos. Meas. Tech., 14, 1501–1510, https://doi.org/10.5194/amt-14-1501-2021, https://doi.org/10.5194/amt-14-1501-2021, 2021
Short summary
Short summary
This work describes the steps taken to ensure a continuous, high-quality dataset of column-averaged greenhouse gas retrievals from the Total Carbon Column Observing Network (TCCON) site at Lauder, New Zealand, following a change in the Fourier transform spectrometer used to make the measurements from which the retrievals are made.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Doug A. Degenstein, Felicia Kolonjari, David Plummer, Douglas E. Kinnison, Patrick Jöckel, and Thomas von Clarmann
Atmos. Meas. Tech., 14, 1425–1438, https://doi.org/10.5194/amt-14-1425-2021, https://doi.org/10.5194/amt-14-1425-2021, 2021
Short summary
Short summary
Output from climate chemistry models (CMAM, EMAC, and WACCM) is used to estimate the expected geophysical variability of ozone concentrations between coincident satellite instrument measurement times and geolocations. We use the Canadian ACE-FTS and OSIRIS instruments as a case study. Ensemble mean estimates are used to optimize coincidence criteria between the two instruments, allowing for the use of more coincident profiles while providing an estimate of the geophysical variation.
Shoma Yamanouchi, Camille Viatte, Kimberly Strong, Erik Lutsch, Dylan B. A. Jones, Cathy Clerbaux, Martin Van Damme, Lieven Clarisse, and Pierre-Francois Coheur
Atmos. Meas. Tech., 14, 905–921, https://doi.org/10.5194/amt-14-905-2021, https://doi.org/10.5194/amt-14-905-2021, 2021
Short summary
Short summary
Ammonia (NH3) is a major source of pollution in the air. As such, there have been increasing efforts to measure the atmospheric abundance of NH3 and its spatial and temporal variability. In this study, long-term measurements of NH3 over Toronto, Canada, derived from multiscale datasets are examined. These NH3 datasets were compared to each other and to a model to better understand NH3 variability and to assess model performance.
Frederik Tack, Alexis Merlaud, Marian-Daniel Iordache, Gaia Pinardi, Ermioni Dimitropoulou, Henk Eskes, Bart Bomans, Pepijn Veefkind, and Michel Van Roozendael
Atmos. Meas. Tech., 14, 615–646, https://doi.org/10.5194/amt-14-615-2021, https://doi.org/10.5194/amt-14-615-2021, 2021
Short summary
Short summary
We assess the TROPOMI tropospheric NO2 product (OFFL v1.03.01; 3.5 km × 7 km at nadir observations) based on coinciding airborne APEX reference observations (~75 m × 120 m), acquired over polluted regions in Belgium. The TROPOMI NO2 product meets the mission requirements in terms of precision and accuracy. However, we show that TROPOMI is biased low over polluted areas, mainly due to the limited spatial resolution of a priori input for the AMF computation.
Claudia Rivera Cárdenas, Cesar Guarín, Wolfgang Stremme, Martina M. Friedrich, Alejandro Bezanilla, Diana Rivera Ramos, Cristina A. Mendoza-Rodríguez, Michel Grutter, Thomas Blumenstock, and Frank Hase
Atmos. Meas. Tech., 14, 595–613, https://doi.org/10.5194/amt-14-595-2021, https://doi.org/10.5194/amt-14-595-2021, 2021
Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Henk J. Eskes, Kai-Uwe Eichmann, Ann Mari Fjæraa, José Granville, Sander Niemeijer, Alexander Cede, Martin Tiefengraber, François Hendrick, Andrea Pazmiño, Alkiviadis Bais, Ariane Bazureau, K. Folkert Boersma, Kristof Bognar, Angelika Dehn, Sebastian Donner, Aleksandr Elokhov, Manuel Gebetsberger, Florence Goutail, Michel Grutter de la Mora, Aleksandr Gruzdev, Myrto Gratsea, Georg H. Hansen, Hitoshi Irie, Nis Jepsen, Yugo Kanaya, Dimitris Karagkiozidis, Rigel Kivi, Karin Kreher, Pieternel F. Levelt, Cheng Liu, Moritz Müller, Monica Navarro Comas, Ankie J. M. Piters, Jean-Pierre Pommereau, Thierry Portafaix, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Julia Remmers, Andreas Richter, John Rimmer, Claudia Rivera Cárdenas, Lidia Saavedra de Miguel, Valery P. Sinyakov, Wolfgang Stremme, Kimberly Strong, Michel Van Roozendael, J. Pepijn Veefkind, Thomas Wagner, Folkard Wittrock, Margarita Yela González, and Claus Zehner
Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, https://doi.org/10.5194/amt-14-481-2021, 2021
Short summary
Short summary
This paper reports on the ground-based validation of the NO2 data produced operationally by the TROPOMI instrument on board the Sentinel-5 Precursor satellite. Tropospheric, stratospheric, and total NO2 columns are compared to measurements collected from MAX-DOAS, ZSL-DOAS, and PGN/Pandora instruments respectively. The products are found to satisfy mission requirements in general, though negative mean differences are found at sites with high pollution levels. Potential causes are discussed.
Susan S. Kulawik, John R. Worden, Vivienne H. Payne, Dejian Fu, Steven C. Wofsy, Kathryn McKain, Colm Sweeney, Bruce C. Daube Jr., Alan Lipton, Igor Polonsky, Yuguang He, Karen E. Cady-Pereira, Edward J. Dlugokencky, Daniel J. Jacob, and Yi Yin
Atmos. Meas. Tech., 14, 335–354, https://doi.org/10.5194/amt-14-335-2021, https://doi.org/10.5194/amt-14-335-2021, 2021
Short summary
Short summary
This paper shows comparisons of a new single-footprint methane product from the AIRS satellite to aircraft-based observations. We show that this AIRS methane product provides useful information to study seasonal and global methane trends of this important greenhouse gas.
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021, https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a ground-based remote sensing measurement technique that derives atmospheric aerosol and trace gas vertical profiles from skylight spectra. In this study, consistency and reliability of MAX-DOAS profiles are assessed by applying nine different evaluation algorithms to spectral data recorded during an intercomparison campaign in the Netherlands and by comparing the results to colocated supporting observations.
Seidai Nara, Tomohiro O. Sato, Takayoshi Yamada, Tamaki Fujinawa, Kota Kuribayashi, Takeshi Manabe, Lucien Froidevaux, Nathaniel J. Livesey, Kaley A. Walker, Jian Xu, Franz Schreier, Yvan J. Orsolini, Varavut Limpasuvan, Nario Kuno, and Yasuko Kasai
Atmos. Meas. Tech., 13, 6837–6852, https://doi.org/10.5194/amt-13-6837-2020, https://doi.org/10.5194/amt-13-6837-2020, 2020
Short summary
Short summary
In the atmosphere, more than 80 % of chlorine compounds are anthropogenic. Hydrogen chloride (HCl), the main stratospheric chlorine reservoir, is useful to estimate the total budget of the atmospheric chlorine compounds. We report, for the first time, the HCl vertical distribution from the middle troposphere to the lower thermosphere using a high-sensitivity SMILES measurement; the data quality is quantified by comparisons with other measurements and via theoretical error analysis.
Robert G. Ryan, Jeremy D. Silver, Richard Querel, Dan Smale, Steve Rhodes, Matt Tully, Nicholas Jones, and Robyn Schofield
Atmos. Meas. Tech., 13, 6501–6519, https://doi.org/10.5194/amt-13-6501-2020, https://doi.org/10.5194/amt-13-6501-2020, 2020
Short summary
Short summary
Models have identified Australasia as a formaldehyde (HCHO) hotspot from vegetation sources, but few measurement studies exist to verify this. We compare, and find good agreement between, HCHO measurements using three – two ground-based and one satellite-based – different spectroscopic techniques in Australia and New Zealand. This gives confidence in using satellite observations to study HCHO and associated air chemistry and pollution problems in this under-studied part of the world.
Gaia Pinardi, Michel Van Roozendael, François Hendrick, Nicolas Theys, Nader Abuhassan, Alkiviadis Bais, Folkert Boersma, Alexander Cede, Jihyo Chong, Sebastian Donner, Theano Drosoglou, Anatoly Dzhola, Henk Eskes, Udo Frieß, José Granville, Jay R. Herman, Robert Holla, Jari Hovila, Hitoshi Irie, Yugo Kanaya, Dimitris Karagkiozidis, Natalia Kouremeti, Jean-Christopher Lambert, Jianzhong Ma, Enno Peters, Ankie Piters, Oleg Postylyakov, Andreas Richter, Julia Remmers, Hisahiro Takashima, Martin Tiefengraber, Pieter Valks, Tim Vlemmix, Thomas Wagner, and Folkard Wittrock
Atmos. Meas. Tech., 13, 6141–6174, https://doi.org/10.5194/amt-13-6141-2020, https://doi.org/10.5194/amt-13-6141-2020, 2020
Short summary
Short summary
We validate several GOME-2 and OMI tropospheric NO2 products with 23 MAX-DOAS and 16 direct sun instruments distributed worldwide, highlighting large horizontal inhomogeneities at several sites affecting the validation results. We propose a method for quantification and correction. We show the application of such correction reduces the satellite underestimation in almost all heterogeneous cases, but a negative bias remains over the MAX-DOAS and direct sun network ensemble for both satellites.
Robin Wing, Wolfgang Steinbrecht, Sophie Godin-Beekmann, Thomas J. McGee, John T. Sullivan, Grant Sumnicht, Gérard Ancellet, Alain Hauchecorne, Sergey Khaykin, and Philippe Keckhut
Atmos. Meas. Tech., 13, 5621–5642, https://doi.org/10.5194/amt-13-5621-2020, https://doi.org/10.5194/amt-13-5621-2020, 2020
Short summary
Short summary
A lidar intercomparison campaign was conducted over a period of 28 nights at Observatoire de Haute-Provence (OHP) in 2017 and 2018. The objective is to validate the ozone and temperature profiles at OHP to ensure the quality of data submitted to the NDACC database remains high. A mobile reference lidar operated by NASA was transported to OHP and operated concurrently with the French lidars. Agreement for ozone was better than 5 % between 20 and 40 km, and temperatures were equal within 3 K.
Alexis Merlaud, Livio Belegante, Daniel-Eduard Constantin, Mirjam Den Hoed, Andreas Carlos Meier, Marc Allaart, Magdalena Ardelean, Maxim Arseni, Tim Bösch, Hugues Brenot, Andreea Calcan, Emmanuel Dekemper, Sebastian Donner, Steffen Dörner, Mariana Carmelia Balanica Dragomir, Lucian Georgescu, Anca Nemuc, Doina Nicolae, Gaia Pinardi, Andreas Richter, Adrian Rosu, Thomas Ruhtz, Anja Schönhardt, Dirk Schuettemeyer, Reza Shaiganfar, Kerstin Stebel, Frederik Tack, Sorin Nicolae Vâjâiac, Jeni Vasilescu, Jurgen Vanhamel, Thomas Wagner, and Michel Van Roozendael
Atmos. Meas. Tech., 13, 5513–5535, https://doi.org/10.5194/amt-13-5513-2020, https://doi.org/10.5194/amt-13-5513-2020, 2020
Short summary
Short summary
The AROMAT campaigns took place in Romania in 2014 and 2015. They aimed to test airborne observation systems dedicated to air quality studies and to verify the concept of such campaigns in support of the validation of space-borne atmospheric missions. We show that airborne measurements of NO2 can be valuable for the validation of air quality satellites. For H2CO and SO2, the validation should involve ground-based measurement systems at key locations that the AROMAT measurements help identify.
Brice Barret, Emanuele Emili, and Eric Le Flochmoen
Atmos. Meas. Tech., 13, 5237–5257, https://doi.org/10.5194/amt-13-5237-2020, https://doi.org/10.5194/amt-13-5237-2020, 2020
Short summary
Short summary
The IASI satellite sensor is used to document the variability and evolution of tropospheric ozone (O3). IASI O3 retrievals generally use a single a priori profile which can be responsible for biases and too-low variability. We have therefore implemented a dynamical a priori profile based on pixel location, month and tropopause height. Comparison with 10 years of global ozonesonde profiles shows large improvements in the retrieved tropospheric O3, with biases corrected and enhanced variabilities.
Ermioni Dimitropoulou, François Hendrick, Gaia Pinardi, Martina M. Friedrich, Alexis Merlaud, Frederik Tack, Helene De Longueville, Caroline Fayt, Christian Hermans, Quentin Laffineur, Frans Fierens, and Michel Van Roozendael
Atmos. Meas. Tech., 13, 5165–5191, https://doi.org/10.5194/amt-13-5165-2020, https://doi.org/10.5194/amt-13-5165-2020, 2020
Short summary
Short summary
We present 1 year of dual-scan ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of aerosol and tropospheric NO2 in Uccle (Belgium). Measuring tropospheric NO2 vertical column densities (VCDs) in different azimuthal directions has a positive effect on comparison with measurements from TROPOMI. We prove that the use of inadequate a priori NO2 profile shape data in the TROPOMI retrieval is responsible for the systematic underestimation of S5P NO2 data.
Hirofumi Ohyama, Isamu Morino, Voltaire A. Velazco, Theresa Klausner, Gerry Bagtasa, Matthäus Kiel, Matthias Frey, Akihiro Hori, Osamu Uchino, Tsuneo Matsunaga, Nicholas M. Deutscher, Joshua P. DiGangi, Yonghoon Choi, Glenn S. Diskin, Sally E. Pusede, Alina Fiehn, Anke Roiger, Michael Lichtenstern, Hans Schlager, Pao K. Wang, Charles C.-K. Chou, Maria Dolores Andrés-Hernández, and John P. Burrows
Atmos. Meas. Tech., 13, 5149–5163, https://doi.org/10.5194/amt-13-5149-2020, https://doi.org/10.5194/amt-13-5149-2020, 2020
Short summary
Short summary
Column-averaged dry-air mole fractions of CO2 and CH4 measured by a solar viewing portable Fourier transform spectrometer (EM27/SUN) were validated with in situ profile data obtained during the transfer flights of two aircraft campaigns. Atmospheric dynamical properties based on ERA5 and WRF-Chem were used as criteria for selecting the best aircraft profiles for the validation. The resulting air-mass-independent correction factors for the EM27/SUN data were 0.9878 for CO2 and 0.9829 for CH4.
Yang Wang, Arnoud Apituley, Alkiviadis Bais, Steffen Beirle, Nuria Benavent, Alexander Borovski, Ilya Bruchkouski, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Henning Finkenzeller, Martina M. Friedrich, Udo Frieß, David Garcia-Nieto, Laura Gómez-Martín, François Hendrick, Andreas Hilboll, Junli Jin, Paul Johnston, Theodore K. Koenig, Karin Kreher, Vinod Kumar, Aleksandra Kyuberis, Johannes Lampel, Cheng Liu, Haoran Liu, Jianzhong Ma, Oleg L. Polyansky, Oleg Postylyakov, Richard Querel, Alfonso Saiz-Lopez, Stefan Schmitt, Xin Tian, Jan-Lukas Tirpitz, Michel Van Roozendael, Rainer Volkamer, Zhuoru Wang, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Thomas Wagner
Atmos. Meas. Tech., 13, 5087–5116, https://doi.org/10.5194/amt-13-5087-2020, https://doi.org/10.5194/amt-13-5087-2020, 2020
Nicole Jacobs, William R. Simpson, Debra Wunch, Christopher W. O'Dell, Gregory B. Osterman, Frank Hase, Thomas Blumenstock, Qiansi Tu, Matthias Frey, Manvendra K. Dubey, Harrison A. Parker, Rigel Kivi, and Pauli Heikkinen
Atmos. Meas. Tech., 13, 5033–5063, https://doi.org/10.5194/amt-13-5033-2020, https://doi.org/10.5194/amt-13-5033-2020, 2020
Short summary
Short summary
The boreal forest is the largest seasonally varying biospheric CO2-exchange region on Earth. This region is also undergoing amplified climate warming, leading to concerns about the potential for altered regional carbon exchange. Satellite missions, such as the Orbiting Carbon Observatory-2 (OCO-2) project, can measure CO2 abundance over the boreal forest but need validation for the assurance of accuracy. Therefore, we carried out a ground-based validation of OCO-2 CO2 data at three locations.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Peter Forkman, Bengt Rydberg, Bernd Funke, Kaley A. Walker, and Hugh C. Pumphrey
Atmos. Meas. Tech., 13, 5013–5031, https://doi.org/10.5194/amt-13-5013-2020, https://doi.org/10.5194/amt-13-5013-2020, 2020
Short summary
Short summary
We present a unique – by time extension and geographical coverage – dataset of satellite observations of carbon monoxide (CO) in the mesosphere which will allow us to study dynamical processes, since CO is a very good tracer of circulation in the mesosphere. Previously, the dataset was unusable due to instrumental artefacts that affected the measurements. We identify the cause of the artefacts, eliminate them and prove the quality of the results by comparing with other instrument measurements.
Sara Martínez-Alonso, Merritt Deeter, Helen Worden, Tobias Borsdorff, Ilse Aben, Róisin Commane, Bruce Daube, Gene Francis, Maya George, Jochen Landgraf, Debbie Mao, Kathryn McKain, and Steven Wofsy
Atmos. Meas. Tech., 13, 4841–4864, https://doi.org/10.5194/amt-13-4841-2020, https://doi.org/10.5194/amt-13-4841-2020, 2020
Short summary
Short summary
CO is of great importance in climate and air quality studies. To understand newly available TROPOMI data in the frame of the global CO record, we compared those to satellite (MOPITT) and airborne (ATom) CO datasets. The MOPITT dataset is the longest to date (2000–present) and is well-characterized. We used ATom to validate cloudy TROPOMI data over oceans and investigate TROPOMI's vertical sensitivity to CO. Our results show that TROPOMI CO data are in excellent agreement with the other datasets.
Qiansi Tu, Frank Hase, Thomas Blumenstock, Rigel Kivi, Pauli Heikkinen, Mahesh Kumar Sha, Uwe Raffalski, Jochen Landgraf, Alba Lorente, Tobias Borsdorff, Huilin Chen, Florian Dietrich, and Jia Chen
Atmos. Meas. Tech., 13, 4751–4771, https://doi.org/10.5194/amt-13-4751-2020, https://doi.org/10.5194/amt-13-4751-2020, 2020
Short summary
Short summary
Two COCCON instruments are used to observe multiyear greenhouse gases in boreal areas and are compared with the CAMS analysis and S5P satellite data. These three datasets predict greenhouse gas gradients with reasonable agreement. The results indicate that the COCCON instrument has the capability of measuring gradients on regional scales, and observations performed with the portable spectrometers can contribute to inferring sources and sinks and to validating spaceborne greenhouse gases.
Lieuwe G. Tilstra, Martin de Graaf, Ping Wang, and Piet Stammes
Atmos. Meas. Tech., 13, 4479–4497, https://doi.org/10.5194/amt-13-4479-2020, https://doi.org/10.5194/amt-13-4479-2020, 2020
Short summary
Short summary
The goal of the study was to determine the accuracy of the radiometric calibration of the TROPOMI instrument on board the Sentinel-5 Precursor satellite in flight. The Earth reflectances were compared to radiative transfer calculations. We report calibration accuracies and errors for 21 selected wavelength bands between 328 and 2314 nm, located in TROPOMI spectral bands 3–7. The reported numbers can be used to perform corrections that will benefit the retrievals of many atmospheric properties.
Temesgen Yirdaw Berhe, Gizaw Mengistu Tsidu, Thomas Blumenstock, Frank Hase, and Gabriele P. Stiller
Atmos. Meas. Tech., 13, 4079–4096, https://doi.org/10.5194/amt-13-4079-2020, https://doi.org/10.5194/amt-13-4079-2020, 2020
Short summary
Short summary
The retrieved CH4 and N2O VMR and column amounts from Addis Ababa, tropical site, are found to exhibit very good agreement with all coincident satellite observations (MIPAS, MLS, and AIRS). Furthermore, the bias obtained from the comparison is comparable to the precision of FTIR measurement, which allows the use of data in further scientific studies as it represents a unique environment of tropical Africa, a region poorly investigated in the past.
Cited articles
Anenberg, S. C., Henze, D. K., Tinney, V., Kinney, P. L., Raich, W., Fann,
N., Malley, C. S., Roman, H., Lamsal, L., Duncan, B., Martin, R. V., van
Donkelaar, A., Brauer, M., Doherty, R., Jonson, J. E., Davila, Y., Sudo, K.
and Kuylenstierna, J. C. I.: Estimates of the Global Burden of Ambient
PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits,
Environ. Health Persp., 126, 107004, https://doi.org/10.1289/EHP3766, 2018.
Behrens, L. K., Hilboll, A., Richter, A., Peters, E., Eskes, H., and Burrows, J. P.: GOME-2A retrievals of tropospheric NO2 in different spectral ranges – influence of penetration depth, Atmos. Meas. Tech., 11, 2769–2795, https://doi.org/10.5194/amt-11-2769-2018, 2018.
Beirle, S., Borger, C., Dörner, S., Li, A., Hu, Z., Liu, F., Wang, Y.
and Wagner, T.: Pinpointing nitrogen oxide emissions from space, Sci.
Adv., 5, eaax9800, https://doi.org/10.1126/sciadv.aax9800, 2019.
Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y., and Brunner, D.: An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech., 4, 1905–1928, https://doi.org/10.5194/amt-4-1905-2011, 2011.
Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H. G. M., Zara, M., Peters, E., Van Roozendael, M., Wagner, T., Maasakkers, J. D., van der A, R. J., Nightingale, J., De Rudder, A., Irie, H., Pinardi, G., Lambert, J.-C., and Compernolle, S. C.: Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project, Atmos. Meas. Tech., 11, 6651–6678, https://doi.org/10.5194/amt-11-6651-2018, 2018.
Borsdorff, T., Aan de Brugh, J., Hu, H., Aben, I., Hasekamp, O., and
Landgraf, J.: Measuring Carbon Monoxide With TROPOMI: First Results and a
Comparison With ECMWF-IFS Analysis Data, Geophys. Res. Lett.,
45, 2826–2832, https://doi.org/10.1002/2018GL077045, 2018.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S.,
Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission
objectives and measurement modes, J. Atmos. Sci.,
56, 127–150, 1999.
Broccardo, S., Heue, K.-P., Walter, D., Meyer, C., Kokhanovsky, A., van der A, R., Piketh, S., Langerman, K., and Platt, U.: Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld, Atmos. Meas. Tech., 11, 2797–2819, https://doi.org/10.5194/amt-11-2797-2018, 2018.
Bucsela, E. J., Krotkov, N. A., Celarier, E. A., Lamsal, L. N., Swartz, W. H., Bhartia, P. K., Boersma, K. F., Veefkind, J. P., Gleason, J. F., and Pickering, K. E.: A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI, Atmos. Meas. Tech., 6, 2607–2626, https://doi.org/10.5194/amt-6-2607-2013, 2013.
Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V.,
Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R.,
Bramstedt, K., and Eichmann, K.-U.: The global ozone monitoring experiment
(GOME): Mission concept and first scientific results, J.
Atmos. Sci., 56, 151–175, 1999.
Chan, K. L., Wiegner, M., van Geffen, J., De Smedt, I., Alberti, C., Cheng, Z., Ye, S., and Wenig, M.: MAX-DOAS measurements of tropospheric NO2 and HCHO in Munich and the comparison to OMI and TROPOMI satellite observations, Atmos. Meas. Tech., 13, 4499–4520, https://doi.org/10.5194/amt-13-4499-2020, 2020.
Chance, K. and Kurucz, R. L.: An improved high-resolution solar reference
spectrum for earth's atmosphere measurements in the ultraviolet, visible,
and near infrared, J. Quant. Spectrosc. Ra.
Transf., 111, 1289–1295, https://doi.org/10.1016/j.jqsrt.2010.01.036,
2010.
Cox, C. and Munk, W.: Measurement of the Roughness of the Sea Surface from
Photographs of the Sun's Glitter, J. Opt. Soc. Am., JOSA, 44, 838–850,
https://doi.org/10.1364/JOSA.44.000838, 1954.
De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., Van Roozendael, M., Richter, A., Hilboll, A., Peters, E., Pedergnana, M., Loyola, D., Beirle, S., Wagner, T., Eskes, H., van Geffen, J., Boersma, K. F., and Veefkind, P.: Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project, Atmos. Meas. Tech., 11, 2395–2426, https://doi.org/10.5194/amt-11-2395-2018, 2018.
Dimitropoulou, E., Hendrick, F., Pinardi, G., Friedrich, M. M., Merlaud, A., Tack, F., De Longueville, H., Fayt, C., Hermans, C., Laffineur, Q., Fierens, F., and Van Roozendael, M.: Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels, Atmos. Meas. Tech., 13, 5165–5191, https://doi.org/10.5194/amt-13-5165-2020, 2020.
Eskes, H. and Eichmann, K.-U.: S5P Mission Performance Centre Nitrogen
Dioxide [L2_NO2_] Readme, available at: http://www.tropomi.eu/sites/default/files/files/publicSentinel-5P-Nitrogen-Dioxide-Level-2-Product-Readme-File_20191105.pdf (last access: 14 April 2020), 2019.
Eskes, H., van Geffen, J., Boersma, F., Eichmann, K.-U., Apituley, A.,
Pedergnana, M., Sneep, M., Veefkind, J. P. and Loyola, D.: Sentinel-5
precursor/TROPOMI Level 2 Product User Manual Nitrogen dioxide, available at: http://www.tropomi.eu/sites/default/files/files/publicS5P-KNMI-L2-0021-MA-Product_User_Manual_for_the_Sentinel_5_precursor_Nitrogen_dioxide-3.0.0-20190327.pdf
(last access: 14 April 2020), 2019.
Fischer, P. H., Marra, M., Ameling, C. B., Hoek, G., Beelen, R., de Hoogh,
K., Breugelmans, O., Kruize, H., Janssen, N. A. H., and Houthuijs, D.: Air
Pollution and Mortality in Seven Million Adults: The Dutch Environmental
Longitudinal Study (DUELS), Environ. Health Perspect., 123, 697–704,
https://doi.org/10.1289/ehp.1408254, 2015.
Garane, K., Koukouli, M.-E., Verhoelst, T., Lerot, C., Heue, K.-P., Fioletov, V., Balis, D., Bais, A., Bazureau, A., Dehn, A., Goutail, F., Granville, J., Griffin, D., Hubert, D., Keppens, A., Lambert, J.-C., Loyola, D., McLinden, C., Pazmino, A., Pommereau, J.-P., Redondas, A., Romahn, F., Valks, P., Van Roozendael, M., Xu, J., Zehner, C., Zerefos, C., and Zimmer, W.: TROPOMI/S5P total ozone column data: global ground-based validation and consistency with other satellite missions, Atmos. Meas. Tech., 12, 5263–5287, https://doi.org/10.5194/amt-12-5263-2019, 2019.
Goldberg, D. L., Lamsal, L. N., Loughner, C. P., Swartz, W. H., Lu, Z., and Streets, D. G.: A high-resolution and observationally constrained OMI NO2 satellite retrieval, Atmos. Chem. Phys., 17, 11403–11421, https://doi.org/10.5194/acp-17-11403-2017, 2017.
Goldberg, D. L., Lu, Z., Streets, D. G., de Foy, B., Griffin, D., McLinden,
C. A., Lamsal, L. N., Krotkov, N. A., and Eskes, H.: Enhanced Capabilities of
TROPOMI NO2?: Estimating NOx from North American Cities and Power Plants,
Environ. Sci. Technol., 53, 12594–12601, https://doi.org/10.1021/acs.est.9b04488, 2019.
González Abad, G., Souri, A. H., Bak, J., Chance, K., Flynn, L. E.,
Krotkov, N. A., Lamsal, L., Li, C., Liu, X., Miller, C. C., Nowlan, C. R.,
Suleiman, R., and Wang, H.: Five decades observing Earth's atmospheric trace
gases using ultraviolet and visible backscatter solar radiation from space,
J. Quant. Spectrosc. Ra. Transf., 238, 106478,
https://doi.org/10.1016/j.jqsrt.2019.04.030, 2019.
Gordon, H. R. and Wang, M.: Surface-roughness considerations for atmospheric
correction of ocean color sensors 1: The Rayleigh-scattering component,
Appl. Opt., 31, 4247, https://doi.org/10.1364/AO.31.004247, 1992.
Griffin, D., Zhao, X., McLinden, C. A., Boersma, F., Bourassa, A., Dammers,
E., Degenstein, D., Eskes, H., Fehr, L., Fioletov, V., Hayden, K., Kharol,
S. K., Li, S.-M., Makar, P., Martin, R. V., Mihele, C., Mittermeier, R. L.,
Krotkov, N., Sneep, M., Lamsal, L. N., Linden, M. ter, Geffen, J. van,
Veefkind, P., and Wolde, M.: High-Resolution Mapping of Nitrogen Dioxide With
TROPOMI: First Results and Validation Over the Canadian Oil Sands,
Geophys. Res. Lett., 46, 1049–1060, https://doi.org/10.1029/2018GL081095, 2019.
Herman, J., Cede, A., Spinei, E., Mount, G., Tzortziou, M., and Abuhassan,
N.: NO2 column amounts from ground-based Pandora and MFDOAS spectrometers
using the direct-sun DOAS technique: Intercomparisons and application to OMI
validation, J. Geophys. Res., 114, D13307, https://doi.org/10.1029/2009JD011848, 2009.
Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Brugh, J. A. de, Aben, I.,
Butz, A., and Hasekamp, O.: Toward Global Mapping of Methane With TROPOMI:
First Results and Intersatellite Comparison to GOSAT, Geophys. Res.
Lett., 45, 3682–3689, https://doi.org/10.1002/2018GL077259, 2018.
Ialongo, I., Virta, H., Eskes, H., Hovila, J., and Douros, J.: Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki, Atmos. Meas. Tech., 13, 205–218, https://doi.org/10.5194/amt-13-205-2020, 2020.
Janz, S., Judd, L., and Kowalewski, M.: Long Island Sound Tropospheric
Ozone Study GeoTASO/GCAS NO2 Vertical Columns,
NASA ASDC Long Island Sound Tropospheric Ozone Study, available at: https://www-air.larc.nasa.gov/missions/listos/index.html (last access: 14 April 2020), 2019.
Judd, L. M., Al-Saadi, J. A., Valin, L. C., Pierce, R. B., Yang, K., Janz,
S. J., Kowalewski, M. G., Szykman, J. J., Tiefengraber, M., and Mueller, M.:
The Dawn of Geostationary Air Quality Monitoring: Case Studies From Seoul
and Los Angeles, Front. Environ. Sci., 6, 85, https://doi.org/10.3389/fenvs.2018.00085, 2018.
Judd, L. M., Al-Saadi, J. A., Janz, S. J., Kowalewski, M. G., Pierce, R. B., Szykman, J. J., Valin, L. C., Swap, R., Cede, A., Mueller, M., Tiefengraber, M., Abuhassan, N., and Williams, D.: Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban areas using high-resolution airborne data, Atmos. Meas. Tech., 12, 6091–6111, https://doi.org/10.5194/amt-12-6091-2019, 2019.
Kim, H. C., Lee, P., Judd, L., Pan, L., and Lefer, B.: OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution, Geosci. Model Dev., 9, 1111–1123, https://doi.org/10.5194/gmd-9-1111-2016, 2016.
Kleipool, Q. L., Dobber, M. R.,de Haan, J. F., and Levelt, P. F.: Earth
surface reflectance climatology from 3 years of OMI data, J.
Geophys. Res.-Atmos., 113, D18308, https://doi.org/10.1029/2008JD010290, 2008.
KNMI: TROPOMI NO2 Product RPRO v1.2, available at: https://www-air.larc.nasa.gov/cgi-bin/ArcView/listos (last access: 6 November 2020), 2019.
Kowalewski, M. G. and Janz, S. J.: Remote sensing capabilities of the
GEO-CAPE airborne simulator, SPIE Conference Proceedings, San Diego,
California, United States, https://doi.org/10.1117/12.2062058, 2014.
Lamsal, L. N., Krotkov, N. A., Celarier, E. A., Swartz, W. H., Pickering, K. E., Bucsela, E. J., Gleason, J. F., Martin, R. V., Philip, S., Irie, H., Cede, A., Herman, J., Weinheimer, A., Szykman, J. J., and Knepp, T. N.: Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations, Atmos. Chem. Phys., 14, 11587–11609, https://doi.org/10.5194/acp-14-11587-2014, 2014.
Lamsal, L. N., Janz, S. J., Krotkov, N. A., Pickering, K. E., Spurr, R. J.
D., Kowalewski, M. G., Loughner, C. P., Crawford, J. H., Swartz, W. H., and
Herman, J. R.: High-resolution NO2 observations from the Airborne Compact
Atmospheric Mapper: Retrieval and validation: High-Resolution NO 2
Observations, J. Geophys. Res.-Atmos., 122,
1953–1970, https://doi.org/10.1002/2016JD025483, 2017.
Lawrence, J. P., Anand, J. S., Vande Hey, J. D., White, J., Leigh, R. R., Monks, P. S., and Leigh, R. J.: High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI), Atmos. Meas. Tech., 8, 4735–4754, https://doi.org/10.5194/amt-8-4735-2015, 2015.
Leitão, J., Richter, A., Vrekoussis, M., Kokhanovsky, A., Zhang, Q. J., Beekmann, M., and Burrows, J. P.: On the improvement of NO2 satellite retrievals – aerosol impact on the airmass factors, Atmos. Meas. Tech., 3, 475–493, https://doi.org/10.5194/amt-3-475-2010, 2010.
Leitch, J. W., Delker, T., Good, W., Ruppert, L., Murcray, F., Chance, K.,
Liu, X., Nowlan, C., Janz, S. J., Krotkov, N. A., Pickering, K. E.,
Kowalewski, M., and Wang, J.: The GeoTASO airborne spectrometer project, SPIE Proceedings, Vol. 921,
edited by: Butler, J. J., Xiong, X. (Jack), and Gu, X., p. 92181H, https://doi.org/10.1117/12.2063763?SSO=1, 2014.
Levelt, P. F., Oord, G. H. J. van den, Dobber, M. R., Malkki, A., Visser,
H., Vries, J. de, Stammes, P., Lundell, J. O. V., and Saari, H.: The ozone
monitoring instrument, IEEE Trans. Geosci. Remote Sens.,
44, 1093–1101, https://doi.org/10.1109/TGRS.2006.872333, 2006.
Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Stein Zweers, D. C., Duncan, B. N., Streets, D. G., Eskes, H., van der A, R., McLinden, C., Fioletov, V., Carn, S., de Laat, J., DeLand, M., Marchenko, S., McPeters, R., Ziemke, J., Fu, D., Liu, X., Pickering, K., Apituley, A., González Abad, G., Arola, A., Boersma, F., Chan Miller, C., Chance, K., de Graaf, M., Hakkarainen, J., Hassinen, S., Ialongo, I., Kleipool, Q., Krotkov, N., Li, C., Lamsal, L., Newman, P., Nowlan, C., Suleiman, R., Tilstra, L. G., Torres, O., Wang, H., and Wargan, K.: The Ozone Monitoring Instrument: overview of 14 years in space, Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, 2018.
Liang, J., Horowitz, L. W., Jacob, D. J., Wang, Y., Fiore, A. M., Logan, J.
A., Gardner, G. M., and Munger, J. W.: Seasonal budgets of reactive nitrogen
species and ozone over the United States, and export fluxes to the global
atmosphere, J. Geophys. Res., 103, 13435–13450, https://doi.org/10.1029/97JD03126, 1998.
Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., and Wagner, T.: NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations, Atmos. Chem. Phys., 16, 5283–5298, https://doi.org/10.5194/acp-16-5283-2016, 2016.
Liu, M., Lin, J., Kong, H., Boersma, K. F., Eskes, H., Kanaya, Y., He, Q., Tian, X., Qin, K., Xie, P., Spurr, R., Ni, R., Yan, Y., Weng, H., and Wang, J.: A new TROPOMI product for tropospheric NO2 columns over East Asia with explicit aerosol corrections, Atmos. Meas. Tech., 13, 4247–4259, https://doi.org/10.5194/amt-13-4247-2020, 2020.
Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., Liu, M., Lamsal, L. N., Barkley, M., De Smedt, I., Van Roozendael, M., Wang, Y., Wagner, T., Beirle, S., Lin, J.-T., Krotkov, N., Stammes, P., Wang, P., Eskes, H. J., and Krol, M.: Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals, Atmos. Meas. Tech., 10, 759–782, https://doi.org/10.5194/amt-10-759-2017, 2017.
Lorente, A., Boersma, K. F., Eskes, H. J., Veefkind, J. P., van Geffen, J.
H. G. M., de Zeeuw, M. B., Denier van der Gon, H. A. C., Beirle, S., and
Krol, M. C.: Quantification of nitrogen oxides emissions from build-up of
pollution over Paris with TROPOMI, Sci. Rep., 9, 20033, https://doi.org/10.1038/s41598-019-56428-5, 2019.
Loyola, D., Lutz, R., Argyrouli, A., and Spurr, R.: S5P/TROPOMI ATBD Cloud Products, sentinel-5p, DLR, 2018.
Lucht, W., Schaaf, C. B., and Strahler, A. H.: An algorithm for the retrieval
of albedo from space using semiempirical BRDF models, IEEE Trans.
Geosci. Remote Sens., 38, 977–998, https://doi.org/10.1109/36.841980, 2000.
Ludewig, A., Kleipool, Q., Bartstra, R., Landzaat, R., Leloux, J., Loots,
E., Meijering, P., van der Plas, E., Rozemeijer, N., Vonk, F., and Veefkind,
P.: In-flight calibration results of the TROPOMI payload on-board
theSentinel-5 Precursor satellite, preprint, Gases/Remote
Sensing/Instruments and Platforms, 2020.
LuftBlick: ESA Ground-Based Air-Quality Spectrometer Validation Network and
Uncertainties Study, available at: https://www.pandonia-global-network.org/wp-content/uploads/2019/06/LuftBlick_Pandonia_TraceGasRetrievalFeasibilityStudy_RP_2016001_v1.1.pdf (last access: 14 April 2020),
2016.
LuftBlick: Pandora Direct Sun Total NO2 Vertical Columns, Pandonia
Global Network, available at: https://www.pandonia-global-network.org/, last access: 6 November 2020.
Ma, J. Z., Beirle, S., Jin, J. L., Shaiganfar, R., Yan, P., and Wagner, T.: Tropospheric NO2 vertical column densities over Beijing: results of the first three years of ground-based MAX-DOAS measurements (2008–2011) and satellite validation, Atmos. Chem. Phys., 13, 1547–1567, https://doi.org/10.5194/acp-13-1547-2013, 2013.
McLinden, C. A., Olsen, S. C., Hannegan, B., Wild, O., Prather, M. J., and
Sundet, J.: Stratospheric ozone in 3-D models: A simple chemistry and the
cross-tropopause flux, J. Geophys. Res.-Atmos.,
105, 14653–14665, https://doi.org/10.1029/2000JD900124, 2000.
Meier, A. C., Schönhardt, A., Bösch, T., Richter, A., Seyler, A., Ruhtz, T., Constantin, D.-E., Shaiganfar, R., Wagner, T., Merlaud, A., Van Roozendael, M., Belegante, L., Nicolae, D., Georgescu, L., and Burrows, J. P.: High-resolution airborne imaging DOAS measurements of NO2 above Bucharest during AROMAT, Atmos. Meas. Tech., 10, 1831–1857, https://doi.org/10.5194/amt-10-1831-2017, 2017.
Nakajima, T. and Tanaka, M.: Effect of wind-generated waves on the transfer
of solar radiation in the atmosphere-ocean system, J. Quant.
Spectrosc. Ra. Transf., 29, 521–537, https://doi.org/10.1016/0022-4073(83)90129-2, 1983.
Nehrir, A., Notari, A., Harper, D., Fitzpatrick, F., Collins, J., Kooi, S.,
Antill, C., Hare, R., Barton-Grimley, R., Hair, J., Ferrare, R., Hostetler,
C., and Welch, W.: The High Altitude Lidar Observatory (HALO): A
multi-function lidar and technology test-bed for airborne and space-based
measurements of water vapor and methane, available at: http://www.estotechnology.us/techportfolio/pdf/additionalInfo/1914_Nehrir/Nehrir_ESTF2018_A1P2.pdf (last access: 14 April 2020), 2018.
Nowlan, C. R., Liu, X., Leitch, J. W., Chance, K., González Abad, G., Liu, C., Zoogman, P., Cole, J., Delker, T., Good, W., Murcray, F., Ruppert, L., Soo, D., Follette-Cook, M. B., Janz, S. J., Kowalewski, M. G., Loughner, C. P., Pickering, K. E., Herman, J. R., Beaver, M. R., Long, R. W., Szykman, J. J., Judd, L. M., Kelley, P., Luke, W. T., Ren, X., and Al-Saadi, J. A.: Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013, Atmos. Meas. Tech., 9, 2647–2668, https://doi.org/10.5194/amt-9-2647-2016, 2016.
Nowlan, C. R., Liu, X., Janz, S. J., Kowalewski, M. G., Chance, K., Follette-Cook, M. B., Fried, A., González Abad, G., Herman, J. R., Judd, L. M., Kwon, H.-A., Loughner, C. P., Pickering, K. E., Richter, D., Spinei, E., Walega, J., Weibring, P., and Weinheimer, A. J.: Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator over Houston, Texas, Atmos. Meas. Tech., 11, 5941–5964, https://doi.org/10.5194/amt-11-5941-2018, 2018.
Palmer, P. I., Jacob, D. J., Chance, K., Martin, R. V., Spurr, R. J. D.,
Kurosu, T. P., Bey, I., Yantosca, R., Fiore, A., and Li, Q.: Air mass factor
formulation for spectroscopic measurements from satellites: Application to
formaldehyde retrievals from the Global Ozone Monitoring Experiment, J.
Geophys. Res., 106, 14539–14550, https://doi.org/10.1029/2000JD900772, 2001.
Pierce, R. B., Schaack, T., Al-Saadi, J. A., Fairlie, T. D., Kittaka, C.,
Lingenfelser, G., Natarajan, M., Olson, J., Soja, A., Zapotocny, T., Lenzen,
A., Stobie, J., Johnson, D., Avery, M. A., Sachse, G. W., Thompson, A.,
Cohen, R., Dibb, J. E., Crawford, J., Rault, D., Martin, R., Szykman, J.,
and Fishman, J.: Impacts of background ozone production on Houston and
Dallas, Texas, air quality during the Second Texas Air Quality Study field
mission, J. Geophys. Res., 114, D00F09,
https://doi.org/10.1029/2008JD011337, 2009.
Platt, U. and Stutz, J.: Differential optical absorption spectroscopy:
principles and applications?; with 55 tables, Springer, Berlin, 2008.
Popp, C., Brunner, D., Damm, A., Van Roozendael, M., Fayt, C., and Buchmann, B.: High-resolution NO2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer, Atmos. Meas. Tech., 5, 2211–2225, https://doi.org/10.5194/amt-5-2211-2012, 2012.
Prather, M.: Catastrophic loss of stratospheric ozone in dense volcanic
clouds, J. Geophys. Re.-Atmos., 97, 10187–10191,
https://doi.org/10.1029/92JD00845, 1992.
Reed, A. J., Thompson, A. M., Kollonige, D. E., Martins, D. K., Tzortziou,
M. A., Herman, J. R., Berkoff, T. A., Abuhassan, N. K., and Cede, A.: Effects
of local meteorology and aerosols on ozone and nitrogen dioxide retrievals
from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011,
J. Atmos. Chem., 72, 455–482, https://doi.org/10.1007/s10874-013-9254-9, 2015.
Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F.,
Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J.-P., Chance,
K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J.-M., Gamache,
R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.
J., Mandin, J.-Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E.,
Moazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov,
V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M.,
Šimečková, M., Smith, M. A. H., Sung, K., Tashkun, S. A.,
Tennyson, J., Toth, R. A., Vandaele, A. C., and Vander Auwera, J.: The HITRAN
2008 molecular spectroscopic database, J. Quant. Spectrosc.
Ra. Transf., 110, 533–572, https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009.
Schaaf, C. and Wang, Z.: MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model
Parameters Daily L3 Global – 500m V006, LP DAAC, https://doi.org/10.5067/MODIS/MCD43A1.006, 2015.
Schónhardt, A., Altube, P., Gerilowski, K., Krautwurst, S., Hartmann, J., Meier, A. C., Richter, A., and Burrows, J. P.: A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft, Atmos. Meas. Tech., 8, 5113–5131, https://doi.org/10.5194/amt-8-5113-2015, 2015.
Souri, A. H., Choi, Y., Pan, S., Curci, G., Nowlan, C. R., Janz, S. J.,
Kowalewski, M. G., Liu, J., Herman, J. R., and Weinheimer, A. J.: First
Top-Down Estimates of Anthropogenic NOx Emissions Using High-Resolution
Airborne Remote Sensing Observations, J. Geophys. Res.-Atmos., 123, 3269–3284, https://doi.org/10.1002/2017JD028009, 2018.
Souri, A. H., Nowlan, C. R., Wolfe, G. M., Lamsal, L. N., Chan Miller, C.
E., Abad, G. G., Janz, S. J., Fried, A., Blake, D. R., Weinheimer, A. J.,
Diskin, G. S., Liu, X., and Chance, K.: Revisiting the effectiveness of
HCHO/NO2 ratios for inferring ozone sensitivity to its precursors using high
resolution airborne remote sensing observations in a high ozone episode
during the KORUS-AQ campaign, Atmos. Environ., 224, 117341,
https://doi.org/10.1016/j.atmosenv.2020.117341, 2020.
Spurr, R.: VLIDORT Version 2.7 User's Guide, Cambridge, USA, 2014.
Spurr, R. J. D.: VLIDORT: A linearized pseudo-spherical vector discrete
ordinate radiative transfer code for forward model and retrieval studies in
multilayer multiple scattering media, J. Quant. Spectrosc.
Ra. Transf., 102, 316–342, https://doi.org/10.1016/j.jqsrt.2006.05.005, 2006.
Stajner, I., Davidson, P., Byun, D., McQueen, J., Draxler, R., Dickerson, P.,
and Meagher, J.: US National Air Quality Forecast Capability: Expanding
Coverage to Include Particulate Matter, in: Air Pollution Modeling and its
Application XXI, edited by: Steyn, D. G. and Trini Castelli, S., 379–384,
Springer Netherlands, 2011.
Tack, F., Merlaud, A., Iordache, M.-D., Danckaert, T., Yu, H., Fayt, C., Meuleman, K., Deutsch, F., Fierens, F., and Van Roozendael, M.: High-resolution mapping of the NO2 spatial distribution over Belgian urban areas based on airborne APEX remote sensing, Atmos. Meas. Tech., 10, 1665–1688, https://doi.org/10.5194/amt-10-1665-2017, 2017.
Tack, F., Merlaud, A., Meier, A. C., Vlemmix, T., Ruhtz, T., Iordache, M.-D., Ge, X., van der Wal, L., Schuettemeyer, D., Ardelean, M., Calcan, A., Constantin, D., Schönhardt, A., Meuleman, K., Richter, A., and Van Roozendael, M.: Intercomparison of four airborne imaging DOAS systems for tropospheric NO2 mapping – the AROMAPEX campaign, Atmos. Meas. Tech., 12, 211–236, https://doi.org/10.5194/amt-12-211-2019, 2019.
Tack, F., Merlaud, A., Iordache, M.-D., Pinardi, G., Dimitropoulou, E., Eskes, H., Bomans, B., Veefkind, P., and Van Roozendael, M.: Assessment of the TROPOMI tropospheric NO2 product based on airborne APEX observations, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-148, in review, 2020.
Thalman, R. and Volkamer, R.: Temperature dependent absorption
cross-sections of O2-O2 collision pairs between 340 and 630 nm and at
atmospherically relevant pressure, Phys. Chem. Chem. Phys.,
15, 15371, https://doi.org/10.1039/c3cp50968k, 2013.
Theys, N., De Smedt, I., Yu, H., Danckaert, T., van Gent, J., Hörmann, C., Wagner, T., Hedelt, P., Bauer, H., Romahn, F., Pedergnana, M., Loyola, D., and Van Roozendael, M.: Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: algorithm theoretical basis, Atmos. Meas. Tech., 10, 119–153, https://doi.org/10.5194/amt-10-119-2017, 2017.
Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally,
S., Mérienne, M. F., Jenouvrier, A., and Coquart, B.: Measurements of the
NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000
nm) at 220 K and 294 K, J. Quant. Spectrosc. Ra.
Transf., 59, 171–184, https://doi.org/10.1016/S0022-4073(97)00168-4, 1998.
van Geffen, J., Eskes, H., Boersma, F., Maasakkers, J. D., and Veefkind, J.
P.: TROPOMI ATBD of the total and tropospheric NO2 data products, available at: http://www.tropomi.eu/sites/default/files/files/publicS5P-KNMI-L2-0005-RP-ATBD_NO2_data_products-20190206_v140.pdf (last access: 14 April 2020), 2019.
van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., and Veefkind, J. P.: S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI, Atmos. Meas. Tech., 13, 1315–1335, https://doi.org/10.5194/amt-13-1315-2020, 2020.
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J.,
Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele,
M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann,
P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.:
TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global
observations of the atmospheric composition for climate, air quality and
ozone layer applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.
Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H. J., Eichmann, K.-U., Fjæraa, A. M., Granville, J., Niemeijer, S., Cede, A., Tiefengraber, M., Hendrick, F., Pazmiño, A., Bais, A., Bazureau, A., Boersma, K. F., Bognar, K., Dehn, A., Donner, S., Elokhov, A., Gebetsberger, M., Goutail, F., Grutter de la Mora, M., Gruzdev, A., Gratsea, M., Hansen, G. H., Irie, H., Jepsen, N., Kanaya, Y., Karagkiozidis, D., Kivi, R., Kreher, K., Levelt, P. F., Liu, C., Müller, M., Navarro Comas, M., Piters, A. J. M., Pommereau, J.-P., Portafaix, T., Puentedura, O., Querel, R., Remmers, J., Richter, A., Rimmer, J., Rivera Cárdenas, C., Saavedra de Miguel, L., Sinyakov, V. P., Strong, K., Van Roozendael, M., Veefkind, J. P., Wagner, T., Wittrock, F., Yela González, M., and Zehner, C.: Ground-based validation of the Copernicus Sentinel-5p TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-119, in review, 2020.
Volkamer, R., Spietz, P., Burrows, J., and Platt, U.: High-resolution
absorption cross-section of glyoxal in the UV–vis and IR spectral ranges,
J. Photochem. Photobiol. A, 172, 35–46,
https://doi.org/10.1016/j.jphotochem.2004.11.011, 2005.
Wang, P., Piters, A., van Geffen, J., Tuinder, O., Stammes, P., and Kinne, S.: Shipborne MAX-DOAS measurements for validation of TROPOMI NO2 products, Atmos. Meas. Tech., 13, 1413–1426, https://doi.org/10.5194/amt-13-1413-2020, 2020.
Williams, J. E., Boersma, K. F., Le Sager, P., and Verstraeten, W. W.: The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation, Geosci. Model Dev., 10, 721–750, https://doi.org/10.5194/gmd-10-721-2017, 2017.
Yang, K., Carn, S. A., Ge, C., Wang, J., and Dickerson, R. R.: Advancing
measurements of tropospheric NO2 from space: New algorithm and first global
results from OMPS, Geophys. Res. Lett., 41, 4777–4786,
https://doi.org/10.1002/2014GL060136, 2014.
Zhao, X., Griffin, D., Fioletov, V., McLinden, C., Cede, A., Tiefengraber, M., Müller, M., Bognar, K., Strong, K., Boersma, F., Eskes, H., Davies, J., Ogyu, A., and Lee, S. C.: Assessment of the quality of TROPOMI high-spatial-resolution NO2 data products in the Greater Toronto Area, Atmos. Meas. Tech., 13, 2131–2159, https://doi.org/10.5194/amt-13-2131-2020, 2020.
Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E.,
Al-Saadi, J. A., Hilton, B. B., Nicks, D. K., Newchurch, M. J., Carr, J. L.,
Janz, S. J., Andraschko, M. R., Arola, A., Baker, B. D., Canova, B. P., Chan
Miller, C., Cohen, R. C., Davis, J. E., Dussault, M. E., Edwards, D. P.,
Fishman, J., Ghulam, A., González Abad, G., Grutter, M., Herman, J. R.,
Houck, J., Jacob, D. J., Joiner, J., Kerridge, B. J., Kim, J., Krotkov, N.
A., Lamsal, L., Li, C., Lindfors, A., Martin, R. V., McElroy, C. T.,
McLinden, C., Natraj, V., Neil, D. O., Nowlan, C. R., O'Sullivan, E. J.,
Palmer, P. I., Pierce, R. B., Pippin, M. R., Saiz-Lopez, A., Spurr, R. J.
D., Szykman, J. J., Torres, O., Veefkind, J. P., Veihelmann, B., Wang, H.,
Wang, J., and Chance, K.: Tropospheric emissions: Monitoring of pollution
(TEMPO), J. Quant. Spectrosc. Ra. Transf., 186,
17–39, https://doi.org/10.1016/j.jqsrt.2016.05.008, 2017.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(12514 KB) - Full-text XML
- Corrigendum
-
Supplement
(910 KB) - BibTeX
- EndNote
Short summary
This paper evaluates Sentinel-5P TROPOMI v1.2 NO2 tropospheric columns over New York City using data from airborne mapping spectrometers and a network of ground-based spectrometers (Pandora) collected in 2018. These evaluations consider impacts due to cloud parameters, a priori profile assumptions, and spatial and temporal variability. Overall, TROPOMI tropospheric NO2 columns appear to have a low bias in this region.
This paper evaluates Sentinel-5P TROPOMI v1.2 NO2 tropospheric columns over New York City using...