Articles | Volume 9, issue 5
https://doi.org/10.5194/amt-9-2381-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-9-2381-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Rugged optical mirrors for Fourier transform spectrometers operated in harsh environments
Max Planck Institute for Biogeochemistry (MPI-BGC), Jena, Germany
Sabrina G. Arnold
Max Planck Institute for Biogeochemistry (MPI-BGC), Jena, Germany
Frank Hase
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany
Dirk Ponge
Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
Related authors
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Oliver Schneising, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Robert J. Parker, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Markus Rettinger, Coleen Roehl, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, and Thorsten Warneke
Atmos. Meas. Tech., 15, 3401–3437, https://doi.org/10.5194/amt-15-3401-2022, https://doi.org/10.5194/amt-15-3401-2022, 2022
Short summary
Short summary
We present a new version (v3) of the GOSAT and GOSAT-2 FOCAL products.
In addition to an increased number of XCO2 data, v3 also includes products for XCH4 (full-physics and proxy), XH2O and the relative ratio of HDO to H2O (δD). For GOSAT-2, we also present first XCO and XN2O results. All FOCAL data products show reasonable spatial distribution and temporal variations and agree well with TCCON. Global XN2O maps show a gradient from the tropics to higher latitudes on the order of 15 ppb.
Edward Malina, Ben Veihelmann, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, and Isamu Morino
Atmos. Meas. Tech., 15, 2377–2406, https://doi.org/10.5194/amt-15-2377-2022, https://doi.org/10.5194/amt-15-2377-2022, 2022
Short summary
Short summary
Methane retrievals from remote sensing instruments are fundamentally based on spectroscopic parameters, which indicate spectral-line positions, and their characteristics. These parameters are stored in several databases that vary in their make-up. Here we assess how concentrations of methane isotopologues measured from the same Total Carbon Column Observing Network (TCCON) instruments vary across a range of spectral windows using different spectroscopic databases and comment on the implications.
Thomas E. Taylor, Christopher W. O'Dell, David Crisp, Akhiko Kuze, Hannakaisa Lindqvist, Paul O. Wennberg, Abhishek Chatterjee, Michael Gunson, Annmarie Eldering, Brendan Fisher, Matthäus Kiel, Robert R. Nelson, Aronne Merrelli, Greg Osterman, Frédéric Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Cheng Liu, Martine De Mazière, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Matthias Schneider, Coleen M. Roehl, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, and Debra Wunch
Earth Syst. Sci. Data, 14, 325–360, https://doi.org/10.5194/essd-14-325-2022, https://doi.org/10.5194/essd-14-325-2022, 2022
Short summary
Short summary
We provide an analysis of an 11-year record of atmospheric carbon dioxide (CO2) concentrations derived using an optimal estimation retrieval algorithm on measurements made by the GOSAT satellite. The new product (version 9) shows improvement over the previous version (v7.3) as evaluated against independent estimates of CO2 from ground-based sensors and atmospheric inversion systems. We also compare the new GOSAT CO2 values to collocated estimates from NASA's Orbiting Carbon Observatory-2.
Mahesh Kumar Sha, Bavo Langerock, Jean-François L. Blavier, Thomas Blumenstock, Tobias Borsdorff, Matthias Buschmann, Angelika Dehn, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Michel Grutter, James W. Hannigan, Frank Hase, Pauli Heikkinen, Christian Hermans, Laura T. Iraci, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Nicolas Kumps, Jochen Landgraf, Alba Lorente, Emmanuel Mahieu, Maria V. Makarova, Johan Mellqvist, Jean-Marc Metzger, Isamu Morino, Tomoo Nagahama, Justus Notholt, Hirofumi Ohyama, Ivan Ortega, Mathias Palm, Christof Petri, David F. Pollard, Markus Rettinger, John Robinson, Sébastien Roche, Coleen M. Roehl, Amelie N. Röhling, Constantina Rousogenous, Matthias Schneider, Kei Shiomi, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, Osamu Uchino, Voltaire A. Velazco, Corinne Vigouroux, Mihalis Vrekoussis, Pucai Wang, Thorsten Warneke, Tyler Wizenberg, Debra Wunch, Shoma Yamanouchi, Yang Yang, and Minqiang Zhou
Atmos. Meas. Tech., 14, 6249–6304, https://doi.org/10.5194/amt-14-6249-2021, https://doi.org/10.5194/amt-14-6249-2021, 2021
Short summary
Short summary
This paper presents, for the first time, Sentinel-5 Precursor methane and carbon monoxide validation results covering a period from November 2017 to September 2020. For this study, we used global TCCON and NDACC-IRWG network data covering a wide range of atmospheric and surface conditions across different terrains. We also show the influence of a priori alignment, smoothing uncertainties and the sensitivity of the validation results towards the application of advanced co-location criteria.
Matthieu Dogniaux, Cyril Crevoisier, Raymond Armante, Virginie Capelle, Thibault Delahaye, Vincent Cassé, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. Garcia, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Justus Notholt, David F. Pollard, Coleen M. Roehl, Kei Shiomi, Kimberly Strong, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 4689–4706, https://doi.org/10.5194/amt-14-4689-2021, https://doi.org/10.5194/amt-14-4689-2021, 2021
Short summary
Short summary
We present the Adaptable 4A Inversion (5AI), an implementation of the optimal estimation (OE) algorithm, relying on the Automatized Atmospheric Absorption Atlas (4A/OP) radiative transfer model, that enables the retrieval of greenhouse gas atmospheric weighted columns from infrared measurements. It is tested on a sample of Orbiting Carbon Observatory-2 observations, and its results satisfactorily compare to several reference products, thus showing the reliability of 5AI OE implementation.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, James R. Podolske, David F. Pollard, Mahesh Kumar Sha, Kei Shiomi, Ralf Sussmann, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 3837–3869, https://doi.org/10.5194/amt-14-3837-2021, https://doi.org/10.5194/amt-14-3837-2021, 2021
Short summary
Short summary
We present the first GOSAT and GOSAT-2 XCO2 data derived with the FOCAL retrieval algorithm. Comparisons of the GOSAT-FOCAL product with other data reveal long-term agreement within about 1 ppm over 1 decade, differences in seasonal variations of about 0.5 ppm, and a mean regional bias to ground-based TCCON data of 0.56 ppm with a mean scatter of 1.89 ppm. GOSAT-2-FOCAL data are preliminary only, but first comparisons show that they compare well with the GOSAT-FOCAL results and TCCON.
Robert J. Parker, Alex Webb, Hartmut Boesch, Peter Somkuti, Rocio Barrio Guillo, Antonio Di Noia, Nikoleta Kalaitzi, Jasdeep S. Anand, Peter Bergamaschi, Frederic Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Coleen Roehl, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Thorsten Warneke, Paul O. Wennberg, and Debra Wunch
Earth Syst. Sci. Data, 12, 3383–3412, https://doi.org/10.5194/essd-12-3383-2020, https://doi.org/10.5194/essd-12-3383-2020, 2020
Short summary
Short summary
This work presents the latest release of the University of Leicester GOSAT methane data and acts as the definitive description of this dataset. We detail the processing, validation and evaluation involved in producing these data and highlight its many applications. With now over a decade of global atmospheric methane observations, this dataset has helped, and will continue to help, us better understand the global methane budget and investigate how it may respond to a future changing climate.
Maximilian Reuter, Michael Buchwitz, Oliver Schneising, Stefan Noël, Heinrich Bovensmann, John P. Burrows, Hartmut Boesch, Antonio Di Noia, Jasdeep Anand, Robert J. Parker, Peter Somkuti, Lianghai Wu, Otto P. Hasekamp, Ilse Aben, Akihiko Kuze, Hiroshi Suto, Kei Shiomi, Yukio Yoshida, Isamu Morino, David Crisp, Christopher W. O'Dell, Justus Notholt, Christof Petri, Thorsten Warneke, Voltaire A. Velazco, Nicholas M. Deutscher, David W. T. Griffith, Rigel Kivi, David F. Pollard, Frank Hase, Ralf Sussmann, Yao V. Té, Kimberly Strong, Sébastien Roche, Mahesh K. Sha, Martine De Mazière, Dietrich G. Feist, Laura T. Iraci, Coleen M. Roehl, Christian Retscher, and Dinand Schepers
Atmos. Meas. Tech., 13, 789–819, https://doi.org/10.5194/amt-13-789-2020, https://doi.org/10.5194/amt-13-789-2020, 2020
Short summary
Short summary
We present new satellite-derived data sets of atmospheric carbon dioxide (CO2) and methane (CH4). The data products are column-averaged dry-air mole fractions of CO2 and CH4, denoted XCO2 and XCH4. The products cover the years 2003–2018 and are merged Level 2 (satellite footprints) and merged Level 3 (gridded at monthly time and 5° x 5° spatial resolution) products obtained from combining several individual sensor products. We present the merging algorithms and product validation results.
Jonas Simon Wilzewski, Anke Roiger, Johan Strandgren, Jochen Landgraf, Dietrich G. Feist, Voltaire A. Velazco, Nicholas M. Deutscher, Isamu Morino, Hirofumi Ohyama, Yao Té, Rigel Kivi, Thorsten Warneke, Justus Notholt, Manvendra Dubey, Ralf Sussmann, Markus Rettinger, Frank Hase, Kei Shiomi, and André Butz
Atmos. Meas. Tech., 13, 731–745, https://doi.org/10.5194/amt-13-731-2020, https://doi.org/10.5194/amt-13-731-2020, 2020
Short summary
Short summary
Through spectral degradation of GOSAT measurements in the 1.6 and 2.0 μm spectral bands, we mimic a single-band, passive satellite sensor for monitoring of CO2 emissions at fine spatial scales. We compare retrievals of XCO2 from these bands to TCCON and native GOSAT retrievals. At spectral resolutions near 1.3 nm, XCO2 retrievals from both bands show promising performance, but the 2.0 μm band is favorable due to better noise performance and the potential to retrieve some aerosol information.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Franziska Aemisegger, Dietrich G. Feist, Rigel Kivi, Frank Hase, Matthias Schneider, and Jochen Landgraf
Atmos. Meas. Tech., 13, 85–100, https://doi.org/10.5194/amt-13-85-2020, https://doi.org/10.5194/amt-13-85-2020, 2020
Short summary
Short summary
This paper presents a new H2O/HDO data set from TROPOMI short-wave infrared measurements. It is validated against recent ground-based FTIR measurements from the TCCON network. A bias in TCCON HDO (which is not verified) is corrected by fitting a correction factor for the HDO column to match MUSICA δD for common observations. The use of the new TROPOMI data set is demonstrated using a case study of a blocking anticyclone over Europe in July 2018.
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, John P. Burrows, Tobias Borsdorff, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Christian Hermans, Laura T. Iraci, Rigel Kivi, Jochen Landgraf, Isamu Morino, Justus Notholt, Christof Petri, David F. Pollard, Sébastien Roche, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Voltaire A. Velazco, Thorsten Warneke, and Debra Wunch
Atmos. Meas. Tech., 12, 6771–6802, https://doi.org/10.5194/amt-12-6771-2019, https://doi.org/10.5194/amt-12-6771-2019, 2019
Short summary
Short summary
We introduce an algorithm that is used to simultaneously derive the abundances of the important atmospheric constituents carbon monoxide and methane from the TROPOMI instrument onboard the Sentinel-5 Precursor satellite, which enables the determination of both gases with an unprecedented level of detail on a global scale. The quality of the resulting data sets is assessed and the first results are presented.
Susan S. Kulawik, Sean Crowell, David Baker, Junjie Liu, Kathryn McKain, Colm Sweeney, Sebastien C. Biraud, Steve Wofsy, Christopher W. O'Dell, Paul O. Wennberg, Debra Wunch, Coleen M. Roehl, Nicholas M. Deutscher, Matthäus Kiel, David W. T. Griffith, Voltaire A. Velazco, Justus Notholt, Thorsten Warneke, Christof Petri, Martine De Mazière, Mahesh K. Sha, Ralf Sussmann, Markus Rettinger, Dave F. Pollard, Isamu Morino, Osamu Uchino, Frank Hase, Dietrich G. Feist, Sébastien Roche, Kimberly Strong, Rigel Kivi, Laura Iraci, Kei Shiomi, Manvendra K. Dubey, Eliezer Sepulveda, Omaira Elena Garcia Rodriguez, Yao Té, Pascal Jeseck, Pauli Heikkinen, Edward J. Dlugokencky, Michael R. Gunson, Annmarie Eldering, David Crisp, Brendan Fisher, and Gregory B. Osterman
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-257, https://doi.org/10.5194/amt-2019-257, 2019
Publication in AMT not foreseen
Short summary
Short summary
This paper provides a benchmark of OCO-2 v8 and ACOS-GOSAT v7.3 XCO2 and lowermost tropospheric (LMT) errors. The paper focuses on the systematic errors and subtracts out validation, co-location, and random errors, looks at the correlation scale-length (spatially and temporally) of systematic errors, finding that the scale lengths are similar to bias correction scale-lengths. The assimilates of the bias correction term is used to place an error on fluxes estimates.
Jacob K. Hedelius, Tai-Long He, Dylan B. A. Jones, Bianca C. Baier, Rebecca R. Buchholz, Martine De Mazière, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Laura T. Iraci, Pascal Jeseck, Matthäus Kiel, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Sébastien Roche, Coleen M. Roehl, Matthias Schneider, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Colm Sweeney, Yao Té, Osamu Uchino, Voltaire A. Velazco, Wei Wang, Thorsten Warneke, Paul O. Wennberg, Helen M. Worden, and Debra Wunch
Atmos. Meas. Tech., 12, 5547–5572, https://doi.org/10.5194/amt-12-5547-2019, https://doi.org/10.5194/amt-12-5547-2019, 2019
Short summary
Short summary
We seek ways to improve the accuracy of column measurements of carbon monoxide (CO) – an important tracer of pollution – made from the MOPITT satellite instrument. We devise a filtering scheme which reduces the scatter and also eliminates bias among the MOPITT detectors. Compared to ground-based observations, MOPITT measurements are about 6 %–8 % higher. When MOPITT data are implemented in a global assimilation model, they tend to reduce the model mismatch with aircraft measurements.
Tobias Borsdorff, Joost aan de Brugh, Andreas Schneider, Alba Lorente, Manfred Birk, Georg Wagner, Rigel Kivi, Frank Hase, Dietrich G. Feist, Ralf Sussmann, Markus Rettinger, Debra Wunch, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 12, 5443–5455, https://doi.org/10.5194/amt-12-5443-2019, https://doi.org/10.5194/amt-12-5443-2019, 2019
Short summary
Short summary
The study presents possible improvements of the TROPOMI CO dataset, which is a primary product of ESA's Sentinel-5P mission. We discuss the use of different molecular spectroscopic databases in the CO retrieval, the induced biases between TROPOMI CO and TCCON validation measurements, and the latitudinally dependent bias between TROPOMI CO and the CAMS-IFS model. Additionally, two methods for the stripe correction of single TROPOMI CO orbits are presented.
Tobias Borsdorff, Joost aan de Brugh, Haili Hu, Otto Hasekamp, Ralf Sussmann, Markus Rettinger, Frank Hase, Jochen Gross, Matthias Schneider, Omaira Garcia, Wolfgang Stremme, Michel Grutter, Dietrich G. Feist, Sabrina G. Arnold, Martine De Mazière, Mahesh Kumar Sha, David F. Pollard, Matthäus Kiel, Coleen Roehl, Paul O. Wennberg, Geoffrey C. Toon, and Jochen Landgraf
Atmos. Meas. Tech., 11, 5507–5518, https://doi.org/10.5194/amt-11-5507-2018, https://doi.org/10.5194/amt-11-5507-2018, 2018
Short summary
Short summary
On 13 October 2017, the S5-P satellite was launched with TROPOMI as its only payload. One of the primary products is atmospheric CO observed with daily global coverage and spatial resolution of 7 × 7 km2. The new dataset allows the sensing of CO enhancements above cities and industrial areas and can track pollution transport from biomass burning regions. Through validation with ground-based TCCON measurements we show that the CO data product is already well within the mission requirement.
Lianghai Wu, Otto Hasekamp, Haili Hu, Jochen Landgraf, Andre Butz, Joost aan de Brugh, Ilse Aben, Dave F. Pollard, David W. T. Griffith, Dietrich G. Feist, Dmitry Koshelev, Frank Hase, Geoffrey C. Toon, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Laura Iraci, Matthias Schneider, Martine de Mazière, Ralf Sussmann, Rigel Kivi, Thorsten Warneke, Tae-Young Goo, and Yao Té
Atmos. Meas. Tech., 11, 3111–3130, https://doi.org/10.5194/amt-11-3111-2018, https://doi.org/10.5194/amt-11-3111-2018, 2018
Peter Bergamaschi, Ute Karstens, Alistair J. Manning, Marielle Saunois, Aki Tsuruta, Antoine Berchet, Alexander T. Vermeulen, Tim Arnold, Greet Janssens-Maenhout, Samuel Hammer, Ingeborg Levin, Martina Schmidt, Michel Ramonet, Morgan Lopez, Jost Lavric, Tuula Aalto, Huilin Chen, Dietrich G. Feist, Christoph Gerbig, László Haszpra, Ove Hermansen, Giovanni Manca, John Moncrieff, Frank Meinhardt, Jaroslaw Necki, Michal Galkowski, Simon O'Doherty, Nina Paramonova, Hubertus A. Scheeren, Martin Steinbacher, and Ed Dlugokencky
Atmos. Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, https://doi.org/10.5194/acp-18-901-2018, 2018
Short summary
Short summary
European methane (CH4) emissions are estimated for 2006–2012 using atmospheric in situ measurements from 18 European monitoring stations and 7 different inverse models. Our analysis highlights the potential significant contribution of natural emissions from wetlands (including peatlands and wet soils) to the total European emissions. The top-down estimates of total EU-28 CH4 emissions are broadly consistent with the sum of reported anthropogenic CH4 emissions and the estimated natural emissions.
Debra Wunch, Paul O. Wennberg, Gregory Osterman, Brendan Fisher, Bret Naylor, Coleen M. Roehl, Christopher O'Dell, Lukas Mandrake, Camille Viatte, Matthäus Kiel, David W. T. Griffith, Nicholas M. Deutscher, Voltaire A. Velazco, Justus Notholt, Thorsten Warneke, Christof Petri, Martine De Maziere, Mahesh K. Sha, Ralf Sussmann, Markus Rettinger, David Pollard, John Robinson, Isamu Morino, Osamu Uchino, Frank Hase, Thomas Blumenstock, Dietrich G. Feist, Sabrina G. Arnold, Kimberly Strong, Joseph Mendonca, Rigel Kivi, Pauli Heikkinen, Laura Iraci, James Podolske, Patrick W. Hillyard, Shuji Kawakami, Manvendra K. Dubey, Harrison A. Parker, Eliezer Sepulveda, Omaira E. García, Yao Te, Pascal Jeseck, Michael R. Gunson, David Crisp, and Annmarie Eldering
Atmos. Meas. Tech., 10, 2209–2238, https://doi.org/10.5194/amt-10-2209-2017, https://doi.org/10.5194/amt-10-2209-2017, 2017
Short summary
Short summary
This paper describes the comparisons between NASA's Orbiting Carbon Observatory (OCO-2) column-averaged dry-air mole fractions of CO2 with its primary ground-based validation network, the Total Carbon Column Observing Network (TCCON). The paper shows that while the standard bias correction reduces much of the spurious variability in the satellite measurements, residual biases remain.
Liang Feng, Paul I. Palmer, Hartmut Bösch, Robert J. Parker, Alex J. Webb, Caio S. C. Correia, Nicholas M. Deutscher, Lucas G. Domingues, Dietrich G. Feist, Luciana V. Gatti, Emanuel Gloor, Frank Hase, Rigel Kivi, Yi Liu, John B. Miller, Isamu Morino, Ralf Sussmann, Kimberly Strong, Osamu Uchino, Jing Wang, and Andreas Zahn
Atmos. Chem. Phys., 17, 4781–4797, https://doi.org/10.5194/acp-17-4781-2017, https://doi.org/10.5194/acp-17-4781-2017, 2017
Short summary
Short summary
We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4:XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. Our results show that assimilation of GOSAT data significantly reduced the posterior uncertainty and changed the a priori spatial distribution of CH4 emissions.
Aki Tsuruta, Tuula Aalto, Leif Backman, Janne Hakkarainen, Ingrid T. van der Laan-Luijkx, Maarten C. Krol, Renato Spahni, Sander Houweling, Marko Laine, Ed Dlugokencky, Angel J. Gomez-Pelaez, Marcel van der Schoot, Ray Langenfelds, Raymond Ellul, Jgor Arduini, Francesco Apadula, Christoph Gerbig, Dietrich G. Feist, Rigel Kivi, Yukio Yoshida, and Wouter Peters
Geosci. Model Dev., 10, 1261–1289, https://doi.org/10.5194/gmd-10-1261-2017, https://doi.org/10.5194/gmd-10-1261-2017, 2017
Short summary
Short summary
In this study, we found that the average global methane emission for 2000–2012, estimated by the CTE-CH4 model, was 516±51 Tg CH4 yr-1, and the estimates for 2007–2012 were 4 % larger than for 2000–2006. The model estimates are sensitive to inputs and setups, but according to sensitivity tests the study suggests that the increase in atmospheric methane concentrations during 21st century was due to an increase in emissions from the 35S-EQ latitudinal bands.
Dmitry A. Belikov, Shamil Maksyutov, Alexander Ganshin, Ruslan Zhuravlev, Nicholas M. Deutscher, Debra Wunch, Dietrich G. Feist, Isamu Morino, Robert J. Parker, Kimberly Strong, Yukio Yoshida, Andrey Bril, Sergey Oshchepkov, Hartmut Boesch, Manvendra K. Dubey, David Griffith, Will Hewson, Rigel Kivi, Joseph Mendonca, Justus Notholt, Matthias Schneider, Ralf Sussmann, Voltaire A. Velazco, and Shuji Aoki
Atmos. Chem. Phys., 17, 143–157, https://doi.org/10.5194/acp-17-143-2017, https://doi.org/10.5194/acp-17-143-2017, 2017
Makoto Inoue, Isamu Morino, Osamu Uchino, Takahiro Nakatsuru, Yukio Yoshida, Tatsuya Yokota, Debra Wunch, Paul O. Wennberg, Coleen M. Roehl, David W. T. Griffith, Voltaire A. Velazco, Nicholas M. Deutscher, Thorsten Warneke, Justus Notholt, John Robinson, Vanessa Sherlock, Frank Hase, Thomas Blumenstock, Markus Rettinger, Ralf Sussmann, Esko Kyrö, Rigel Kivi, Kei Shiomi, Shuji Kawakami, Martine De Mazière, Sabrina G. Arnold, Dietrich G. Feist, Erica A. Barrow, James Barney, Manvendra Dubey, Matthias Schneider, Laura T. Iraci, James R. Podolske, Patrick W. Hillyard, Toshinobu Machida, Yousuke Sawa, Kazuhiro Tsuboi, Hidekazu Matsueda, Colm Sweeney, Pieter P. Tans, Arlyn E. Andrews, Sebastien C. Biraud, Yukio Fukuyama, Jasna V. Pittman, Eric A. Kort, and Tomoaki Tanaka
Atmos. Meas. Tech., 9, 3491–3512, https://doi.org/10.5194/amt-9-3491-2016, https://doi.org/10.5194/amt-9-3491-2016, 2016
Short summary
Short summary
In this study, we correct the biases of GOSAT XCO2 and XCH4 using TCCON data. To evaluate the effectiveness of our correction method, uncorrected/corrected GOSAT data are compared to independent XCO2 and XCH4 data derived from aircraft measurements. Consequently, we suggest that this method is effective for reducing the biases of the GOSAT data. We consider that our work provides GOSAT data users with valuable information and contributes to the further development of studies on greenhouse gases.
Minqiang Zhou, Bart Dils, Pucai Wang, Rob Detmers, Yukio Yoshida, Christopher W. O'Dell, Dietrich G. Feist, Voltaire Almario Velazco, Matthias Schneider, and Martine De Mazière
Atmos. Meas. Tech., 9, 1415–1430, https://doi.org/10.5194/amt-9-1415-2016, https://doi.org/10.5194/amt-9-1415-2016, 2016
Short summary
Short summary
The sun-glint XCO2 and XCH4 products (“ocean data”) of thermal and near infrared sensor for carbon observations Fourier transform spectrometer (TANSO-FTS) on board the Greenhouse Gases Observing Satellite (GOSAT) from several retrieval algorithms is compared with the FTIR measurements form near-ocean Total Carbon Column Observing Network (TCCON) sites, and the results indicate that the ocean data show a good agreement with TCCON measurements.
Susan Kulawik, Debra Wunch, Christopher O'Dell, Christian Frankenberg, Maximilian Reuter, Tomohiro Oda, Frederic Chevallier, Vanessa Sherlock, Michael Buchwitz, Greg Osterman, Charles E. Miller, Paul O. Wennberg, David Griffith, Isamu Morino, Manvendra K. Dubey, Nicholas M. Deutscher, Justus Notholt, Frank Hase, Thorsten Warneke, Ralf Sussmann, John Robinson, Kimberly Strong, Matthias Schneider, Martine De Mazière, Kei Shiomi, Dietrich G. Feist, Laura T. Iraci, and Joyce Wolf
Atmos. Meas. Tech., 9, 683–709, https://doi.org/10.5194/amt-9-683-2016, https://doi.org/10.5194/amt-9-683-2016, 2016
Short summary
Short summary
To accurately estimate source and sink locations of carbon dioxide, systematic errors in satellite measurements and models must be characterized. This paper examines two satellite data sets (GOSAT, launched 2009, and SCIAMACHY, launched 2002), and two models (CarbonTracker and MACC) vs. the TCCON CO2 validation data set. We assess biases and errors by season and latitude, satellite performance under averaging, and diurnal variability. Our findings are useful for assimilation of satellite data.
Sébastien Massart, Anna Agustí-Panareda, Jens Heymann, Michael Buchwitz, Frédéric Chevallier, Maximilian Reuter, Michael Hilker, John P. Burrows, Nicholas M. Deutscher, Dietrich G. Feist, Frank Hase, Ralf Sussmann, Filip Desmet, Manvendra K. Dubey, David W. T. Griffith, Rigel Kivi, Christof Petri, Matthias Schneider, and Voltaire A. Velazco
Atmos. Chem. Phys., 16, 1653–1671, https://doi.org/10.5194/acp-16-1653-2016, https://doi.org/10.5194/acp-16-1653-2016, 2016
Short summary
Short summary
This study presents the European Centre for Medium-Range Weather Forecasts (ECMWF) monitoring of atmospheric CO2 using measurements from the Greenhouse gases Observing Satellite (GOSAT). We show that the modelled CO2 has a better precision than standard CO2 satellite products compared to ground-based measurements. We also present the CO2 forecast based on our best knowledge of the atmospheric CO2 distribution. We show that it has skill to forecast the largest scale CO2 patterns up to day 5.
L. Feng, P. I. Palmer, R. J. Parker, N. M. Deutscher, D. G. Feist, R. Kivi, I. Morino, and R. Sussmann
Atmos. Chem. Phys., 16, 1289–1302, https://doi.org/10.5194/acp-16-1289-2016, https://doi.org/10.5194/acp-16-1289-2016, 2016
Short summary
Short summary
There is an on-going debate on the larger European biospheric uptake inferred from GOSAT XCO2 retrievals than those inferred from in situ data. Using a set of 15 experiments, we found that the elevated uptake over Europe could largely be explained by mis-fitting data due to regional XCO2 biases: 50–80 % of the elevated European uptake is due to retrievals outside the immediate European; and a varying monthly bias of up to 0.5 ppm for XCO2 retrievals over Europe could explain most of the remainder.
G. Biavati, D. G. Feist, C. Gerbig, and R. Kretschmer
Atmos. Meas. Tech., 8, 4215–4230, https://doi.org/10.5194/amt-8-4215-2015, https://doi.org/10.5194/amt-8-4215-2015, 2015
Short summary
Short summary
The goal of this work is to present a method that can be used to estimate the uncertainty for a singular estimate for the mixing height. It is defined here as the localization error. The method is based on the actual signal (radiosonde) and its measurement errors, ant it does not consider the physics causing the signal.
It can be applied to all kind of signals and algorithm when standard error propagation cannot be used to asses the uncertainty of a location of a localized property.
F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl
Atmos. Meas. Tech., 6, 3527–3537, https://doi.org/10.5194/amt-6-3527-2013, https://doi.org/10.5194/amt-6-3527-2013, 2013
G. Wetzel, H. Oelhaf, G. Berthet, A. Bracher, C. Cornacchia, D. G. Feist, H. Fischer, A. Fix, M. Iarlori, A. Kleinert, A. Lengel, M. Milz, L. Mona, S. C. Müller, J. Ovarlez, G. Pappalardo, C. Piccolo, P. Raspollini, J.-B. Renard, V. Rizi, S. Rohs, C. Schiller, G. Stiller, M. Weber, and G. Zhang
Atmos. Chem. Phys., 13, 5791–5811, https://doi.org/10.5194/acp-13-5791-2013, https://doi.org/10.5194/acp-13-5791-2013, 2013
Harish Shivraj Gadhavi, Akanksha Arora, Chaithanya Jain, Mahesh Kumar Sha, Frank Hase, Matthias Frey, Srikanthan Ramachandran, and Achuthan Jayaraman
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-167, https://doi.org/10.5194/amt-2024-167, 2024
Preprint under review for AMT
Short summary
Short summary
We used a ground-based Fourier Transform Spectrometer to measure columnar greenhouse gas mixing ratios and validate methane observations from the GOSAT satellite and carbon dioxide observations from GOSAT and OCO-2 over India. Both satellites provide high precision and accuracy, making them suitable for emission flux estimates. Simulations using a Lagrangian dispersion model showed that background mixing ratio variations play a larger role than local source changes.
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Frank Hase, Paolo Castracane, Angelika Dehn, Omaira Elena García, David W. T. Griffith, Lukas Heizmann, Nicholas B. Jones, Tomi Karppinen, Rigel Kivi, Martine de Mazière, Justus Notholt, and Mahesh Kumar Sha
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-140, https://doi.org/10.5194/amt-2024-140, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
The primary measurement result delivered by a Fourier Transform spectrometer is an interferogram, and the spectrum required for further analysis needs to be calculated from the interferogram by a Fourier analysis. The paper deals with technical aspects of this process and shows how the reconstruction of the spectrum can be optimized.
Neil Humpage, Hartmut Boesch, William Okello, Jia Chen, Florian Dietrich, Mark F. Lunt, Liang Feng, Paul I. Palmer, and Frank Hase
Atmos. Meas. Tech., 17, 5679–5707, https://doi.org/10.5194/amt-17-5679-2024, https://doi.org/10.5194/amt-17-5679-2024, 2024
Short summary
Short summary
We used a Bruker EM27/SUN spectrometer within an automated weatherproof enclosure to measure greenhouse gas column concentrations over a 3-month period in Jinja, Uganda. The portability of the EM27/SUN allows us to evaluate satellite and model data in locations not covered by traditional validation networks. This is of particular value in tropical Africa, where extensive terrestrial ecosystems are a significant store of carbon and play a key role in the atmospheric budgets of CO2 and CH4.
Matthias Schneider, Kinya Toride, Farahnaz Khosrawi, Frank Hase, Benjamin Ertl, Christopher J. Diekmann, and Kei Yoshimura
Atmos. Meas. Tech., 17, 5243–5259, https://doi.org/10.5194/amt-17-5243-2024, https://doi.org/10.5194/amt-17-5243-2024, 2024
Short summary
Short summary
Despite its importance for extreme weather and climate feedbacks, atmospheric convection is not well constrained. This study assesses the potential of novel tropospheric water vapour isotopologue satellite observations for improving the analyses of convective events. We find that the impact of the isotopologues is small for stable atmospheric conditions but significant for unstable conditions, which have the strongest societal impacts (e.g. storms and flooding).
Christopher Johannes Diekmann, Matthias Schneider, Peter Knippertz, Tim Trent, Hartmut Boesch, Amelie Ninja Roehling, John Worden, Benjamin Ertl, Farahnaz Khosrawi, and Frank Hase
EGUsphere, https://doi.org/10.5194/egusphere-2024-1613, https://doi.org/10.5194/egusphere-2024-1613, 2024
Short summary
Short summary
The West African Monsoon is the main source of rainfall over West Africa, and understanding the development of the monsoon remains challenging due to complex interactions of atmospheric processes. We make use of new satellite datasets of isotopes in tropospheric water vapour to bring new insights into processes controlling the monsoon convection. We find that comparing different water vapour isotopes reveals effects of rain-vapour interactions and air mass transport.
Benedikt Herkommer, Carlos Alberti, Paolo Castracane, Jia Chen, Angelika Dehn, Florian Dietrich, Nicholas M. Deutscher, Matthias Max Frey, Jochen Groß, Lawson Gillespie, Frank Hase, Isamu Morino, Nasrin Mostafavi Pak, Brittany Walker, and Debra Wunch
Atmos. Meas. Tech., 17, 3467–3494, https://doi.org/10.5194/amt-17-3467-2024, https://doi.org/10.5194/amt-17-3467-2024, 2024
Short summary
Short summary
The Total Carbon Column Observing Network is a network of ground-based Fourier transform infrared (FTIR) spectrometers used mainly for satellite validation. To ensure the highest-quality validation data, the network needs to be highly consistent. This is a major challenge, which so far is solved by site comparisons with airborne in situ measurements. In this work, we describe the use of a portable FTIR spectrometer as a travel standard for evaluating the consistency of TCCON sites.
Qiansi Tu, Frank Hase, Kai Qin, Jason Blake Cohen, Farahnaz Khosrawi, Xinrui Zou, Matthias Schneider, and Fan Lu
Atmos. Chem. Phys., 24, 4875–4894, https://doi.org/10.5194/acp-24-4875-2024, https://doi.org/10.5194/acp-24-4875-2024, 2024
Short summary
Short summary
Four-year satellite observations of XCH4 are used to derive CH4 emissions in three regions of China’s coal-rich Shanxi province. The wind-assigned anomalies for two opposite wind directions are calculated, and the estimated emission rates are comparable to the current bottom-up inventory but lower than the CAMS and EDGAR inventories. This research enhances the understanding of emissions in Shanxi and supports climate mitigation strategies by validating emission inventories.
Jean-François Müller, Trissevgeni Stavrakou, Glenn-Michael Oomen, Beata Opacka, Isabelle De Smedt, Alex Guenther, Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Michel Grutter, James Hannigan, Frank Hase, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Amelie Röhling, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Alan Fried
Atmos. Chem. Phys., 24, 2207–2237, https://doi.org/10.5194/acp-24-2207-2024, https://doi.org/10.5194/acp-24-2207-2024, 2024
Short summary
Short summary
Formaldehyde observations from satellites can be used to constrain the emissions of volatile organic compounds, but those observations have biases. Using an atmospheric model, aircraft and ground-based remote sensing data, we quantify these biases, propose a correction to the data, and assess the consequence of this correction for the evaluation of emissions.
Tobias D. Schmitt, Jonas Kuhn, Ralph Kleinschek, Benedikt A. Löw, Stefan Schmitt, William Cranton, Martina Schmidt, Sanam N. Vardag, Frank Hase, David W. T. Griffith, and André Butz
Atmos. Meas. Tech., 16, 6097–6110, https://doi.org/10.5194/amt-16-6097-2023, https://doi.org/10.5194/amt-16-6097-2023, 2023
Short summary
Short summary
Our new observatory measures greenhouse gas concentrations of carbon dioxide (CO2) and methane (CH4) along a 1.55 km long light path over the city of Heidelberg, Germany. We compared our measurements with measurements that were taken at a single point at one end of our path. The two mostly agreed but show a significant difference for CO2 with certain wind directions. This is important when using greenhouse gas concentration measurements to observe greenhouse gas emissions of cities.
Hirofumi Ohyama, Matthias M. Frey, Isamu Morino, Kei Shiomi, Masahide Nishihashi, Tatsuya Miyauchi, Hiroko Yamada, Makoto Saito, Masanobu Wakasa, Thomas Blumenstock, and Frank Hase
Atmos. Chem. Phys., 23, 15097–15119, https://doi.org/10.5194/acp-23-15097-2023, https://doi.org/10.5194/acp-23-15097-2023, 2023
Short summary
Short summary
We conducted a field campaign for CO2 column measurements in the Tokyo metropolitan area with three ground-based Fourier transform spectrometers. The model simulations using prior CO2 fluxes were generally in good agreement with the observations. We developed an urban-scale inversion system in which spatially resolved CO2 fluxes and a scaling factor of large point source emissions were estimated. The posterior total CO2 emissions agreed with emission inventories within the posterior uncertainty.
Benedikt A. Löw, Ralph Kleinschek, Vincent Enders, Stanley P. Sander, Thomas J. Pongetti, Tobias D. Schmitt, Frank Hase, Julian Kostinek, and André Butz
Atmos. Meas. Tech., 16, 5125–5144, https://doi.org/10.5194/amt-16-5125-2023, https://doi.org/10.5194/amt-16-5125-2023, 2023
Short summary
Short summary
We developed a portable spectrometer (EM27/SCA) that remotely measures greenhouse gases in the lower atmosphere above a target region. The measurements can deliver insights into local emission patterns. To evaluate its performance, we set up the EM27/SCA above the Los Angeles Basin side by side with a similar non-portable instrument (CLARS-FTS). The precision is promising and the measurements are consistent with CLARS-FTS. In the future, we need to account for light scattering.
Óscar Alvárez, África Barreto, Omaira E. García, Frank Hase, Rosa D. García, Julian Gröbner, Sergio F. León-Luis, Eliezer Sepúlveda, Virgilio Carreño, Antonio Alcántara, Ramón Ramos, A. Fernando Almansa, Stelios Kazadzis, Noémie Taquet, Carlos Toledano, and Emilio Cuevas
Atmos. Meas. Tech., 16, 4861–4884, https://doi.org/10.5194/amt-16-4861-2023, https://doi.org/10.5194/amt-16-4861-2023, 2023
Short summary
Short summary
In this work, we have extended the capabilities of a portable Fourier transform infrared (FTIR) instrument, which was originally designed to provide high-quality greenhouse gas monitoring within COCCON (COllaborative Carbon Column Observing Network). The extension allows the spectrometer to now also provide coincidentally column-integrated aerosol information. This addition of a reference instrument to a global network will be utilised to enhance our understanding of atmospheric chemistry.
Yifan Guan, Gretchen Keppel-Aleks, Scott C. Doney, Christof Petri, Dave Pollard, Debra Wunch, Frank Hase, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Kim Strong, Rigel Kivi, Matthias Buschmann, Nicholas Deutscher, Paul Wennberg, Ralf Sussmann, Voltaire A. Velazco, and Yao Té
Atmos. Chem. Phys., 23, 5355–5372, https://doi.org/10.5194/acp-23-5355-2023, https://doi.org/10.5194/acp-23-5355-2023, 2023
Short summary
Short summary
We characterize spatial–temporal patterns of interannual variability (IAV) in atmospheric CO2 based on NASA’s Orbiting Carbon Observatory-2 (OCO-2). CO2 variation is strongly impacted by climate events, with higher anomalies during El Nino years. We show high correlation in IAV between space-based and ground-based CO2 from long-term sites. Because OCO-2 has near-global coverage, our paper provides a roadmap to study IAV where in situ observation is sparse, such as open oceans and remote lands.
Qiansi Tu, Frank Hase, Zihan Chen, Matthias Schneider, Omaira García, Farahnaz Khosrawi, Shuo Chen, Thomas Blumenstock, Fang Liu, Kai Qin, Jason Cohen, Qin He, Song Lin, Hongyan Jiang, and Dianjun Fang
Atmos. Meas. Tech., 16, 2237–2262, https://doi.org/10.5194/amt-16-2237-2023, https://doi.org/10.5194/amt-16-2237-2023, 2023
Short summary
Short summary
Four-year TROPOMI observations are used to derive tropospheric NO2 emissions in two mega(cities) with high anthropogenic activity. Wind-assigned anomalies are calculated, and the emission rates and spatial patterns are estimated based on a machine learning algorithm. The results are in reasonable agreement with previous studies and the inventory. Our method is quite robust and can be used as a simple method to estimate the emissions of NO2 as well as other gases in other regions.
Farahnaz Khosrawi, Kinya Toride, Kei Yoshimura, Christopher Diekmann, Benjamin Ertl, Frank Hase, and Matthias Schneider
EGUsphere, https://doi.org/10.5194/egusphere-2022-1408, https://doi.org/10.5194/egusphere-2022-1408, 2022
Preprint withdrawn
Short summary
Short summary
We assess with an Observation System Simulation Experiment the potential of mid-tropospheric water isotopologue data for constraining uncertainties in meteorological analysis fields in the tropics. Our assimilation experiments indicate that isotopologue observations have the potential to reduce the uncertainties of diabatic heating rates and precipitation in the tropics and in consequence offer potential for improving meteorological analysis in the tropical regions.
David F. Pollard, Frank Hase, Mahesh Kumar Sha, Darko Dubravica, Carlos Alberti, and Dan Smale
Earth Syst. Sci. Data, 14, 5427–5437, https://doi.org/10.5194/essd-14-5427-2022, https://doi.org/10.5194/essd-14-5427-2022, 2022
Short summary
Short summary
We describe measurements made in Antarctica using an EM27/SUN, a near-infrared, portable, low-resolution spectrometer from which we can retrieve the average atmospheric concentration of several greenhouse gases. We show that these measurements are reliable and comparable to other, similar ground-based measurements. Comparisons to the ESA's Sentinel-5 precursor (S5P) satellite demonstrate the usefulness of these data for satellite validation.
Maximilian Rißmann, Jia Chen, Gregory Osterman, Xinxu Zhao, Florian Dietrich, Moritz Makowski, Frank Hase, and Matthäus Kiel
Atmos. Meas. Tech., 15, 6605–6623, https://doi.org/10.5194/amt-15-6605-2022, https://doi.org/10.5194/amt-15-6605-2022, 2022
Short summary
Short summary
The Orbiting Carbon Observatory 2 (OCO-2) measures atmospheric concentrations of the most potent greenhouse gas, CO2, globally. By comparing its measurements to a ground-based monitoring network in Munich (MUCCnet), we find that the satellite is able to reliably detect urban CO2 concentrations. Furthermore, spatial CO2 differences captured by OCO-2 and MUCCnet are strongly correlated, which indicates that OCO-2 could be helpful in determining urban CO2 emissions from space.
Beatriz Herrera, Alejandro Bezanilla, Thomas Blumenstock, Enrico Dammers, Frank Hase, Lieven Clarisse, Adolfo Magaldi, Claudia Rivera, Wolfgang Stremme, Kimberly Strong, Camille Viatte, Martin Van Damme, and Michel Grutter
Atmos. Chem. Phys., 22, 14119–14132, https://doi.org/10.5194/acp-22-14119-2022, https://doi.org/10.5194/acp-22-14119-2022, 2022
Short summary
Short summary
This work investigates atmospheric ammonia (NH3), a key trace gas with consequences for the environment and human health, in Mexico City. The results from the ground-based and satellite instruments show the variability and spatial distribution of NH3 over this region. NH3 in Mexico City has been increasing for the past 10 years and most of its sources are urban. This work contributes to a better understanding of NH3 sources and variability in urban and remote areas.
Omaira E. García, Esther Sanromá, Frank Hase, Matthias Schneider, Sergio Fabián León-Luis, Thomas Blumenstock, Eliezer Sepúlveda, Carlos Torres, Natalia Prats, Alberto Redondas, and Virgilio Carreño
Atmos. Meas. Tech., 15, 4547–4567, https://doi.org/10.5194/amt-15-4547-2022, https://doi.org/10.5194/amt-15-4547-2022, 2022
Short summary
Short summary
Retrieving high-precision concentrations of atmospheric trace gases from FTIR (Fourier transform infrared) spectrometry requires a precise knowledge of the instrumental performance. In this context, this paper examines the impact on the ozone (O3) retrievals of several approaches used to characterise the instrumental line shape (ILS) function of ground-based FTIR spectrometers within NDACC (Network for the Detection of Atmospheric Composition Change).
Qiansi Tu, Matthias Schneider, Frank Hase, Farahnaz Khosrawi, Benjamin Ertl, Jaroslaw Necki, Darko Dubravica, Christopher J. Diekmann, Thomas Blumenstock, and Dianjun Fang
Atmos. Chem. Phys., 22, 9747–9765, https://doi.org/10.5194/acp-22-9747-2022, https://doi.org/10.5194/acp-22-9747-2022, 2022
Short summary
Short summary
Three-year satellite observations and high-resolution model forecast of XCH4 are used to derive CH4 emissions in the USCB region, Poland – a region of intense coal mining activities. The wind-assigned anomalies for two opposite wind directions are calculated and the estimated emission rates are very close to the inventories and in reasonable agreement with the previous studies. Our method is quite robust and can serve as a simple method to estimate CH4 or CO2 emissions for other regions.
Matthias Schneider, Benjamin Ertl, Qiansi Tu, Christopher J. Diekmann, Farahnaz Khosrawi, Amelie N. Röhling, Frank Hase, Darko Dubravica, Omaira E. García, Eliezer Sepúlveda, Tobias Borsdorff, Jochen Landgraf, Alba Lorente, André Butz, Huilin Chen, Rigel Kivi, Thomas Laemmel, Michel Ramonet, Cyril Crevoisier, Jérome Pernin, Martin Steinbacher, Frank Meinhardt, Kimberly Strong, Debra Wunch, Thorsten Warneke, Coleen Roehl, Paul O. Wennberg, Isamu Morino, Laura T. Iraci, Kei Shiomi, Nicholas M. Deutscher, David W. T. Griffith, Voltaire A. Velazco, and David F. Pollard
Atmos. Meas. Tech., 15, 4339–4371, https://doi.org/10.5194/amt-15-4339-2022, https://doi.org/10.5194/amt-15-4339-2022, 2022
Short summary
Short summary
We present a computationally very efficient method for the synergetic use of level 2 remote-sensing data products. We apply the method to IASI vertical profile and TROPOMI total column space-borne methane observations and thus gain sensitivity for the tropospheric methane partial columns, which is not achievable by the individual use of TROPOMI and IASI. These synergetic effects are evaluated theoretically and empirically by inter-comparisons to independent references of TCCON, AirCore, and GAW.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Oliver Schneising, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Robert J. Parker, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Markus Rettinger, Coleen Roehl, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, and Thorsten Warneke
Atmos. Meas. Tech., 15, 3401–3437, https://doi.org/10.5194/amt-15-3401-2022, https://doi.org/10.5194/amt-15-3401-2022, 2022
Short summary
Short summary
We present a new version (v3) of the GOSAT and GOSAT-2 FOCAL products.
In addition to an increased number of XCO2 data, v3 also includes products for XCH4 (full-physics and proxy), XH2O and the relative ratio of HDO to H2O (δD). For GOSAT-2, we also present first XCO and XN2O results. All FOCAL data products show reasonable spatial distribution and temporal variations and agree well with TCCON. Global XN2O maps show a gradient from the tropics to higher latitudes on the order of 15 ppb.
Andreas Luther, Julian Kostinek, Ralph Kleinschek, Sara Defratyka, Mila Stanisavljević, Andreas Forstmaier, Alexandru Dandocsi, Leon Scheidweiler, Darko Dubravica, Norman Wildmann, Frank Hase, Matthias M. Frey, Jia Chen, Florian Dietrich, Jarosław Nȩcki, Justyna Swolkień, Christoph Knote, Sanam N. Vardag, Anke Roiger, and André Butz
Atmos. Chem. Phys., 22, 5859–5876, https://doi.org/10.5194/acp-22-5859-2022, https://doi.org/10.5194/acp-22-5859-2022, 2022
Short summary
Short summary
Coal mining is an extensive source of anthropogenic methane emissions. In order to reduce and mitigate methane emissions, it is important to know how much and where the methane is emitted. We estimated coal mining methane emissions in Poland based on atmospheric methane measurements and particle dispersion modeling. In general, our emission estimates suggest higher emissions than expected by previous annual emission reports.
Omaira Elena García, Esther Sanromá, Matthias Schneider, Frank Hase, Sergio Fabián León-Luis, Thomas Blumenstock, Eliezer Sepúlveda, Alberto Redondas, Virgilio Carreño, Carlos Torres, and Natalia Prats
Atmos. Meas. Tech., 15, 2557–2577, https://doi.org/10.5194/amt-15-2557-2022, https://doi.org/10.5194/amt-15-2557-2022, 2022
Short summary
Short summary
Accurate observations of atmospheric ozone (O3) are essential to monitor in detail its key role in atmospheric chemistry. In this context, this paper has assessed the effect of using different retrieval strategies on the quality of O3 products from ground-based NDACC FTIR (Fourier transform infrared) spectrometry, with the aim of providing an improved O3 retrieval that could be applied at any NDACC FTIR station.
Carlos Alberti, Frank Hase, Matthias Frey, Darko Dubravica, Thomas Blumenstock, Angelika Dehn, Paolo Castracane, Gregor Surawicz, Roland Harig, Bianca C. Baier, Caroline Bès, Jianrong Bi, Hartmut Boesch, André Butz, Zhaonan Cai, Jia Chen, Sean M. Crowell, Nicholas M. Deutscher, Dragos Ene, Jonathan E. Franklin, Omaira García, David Griffith, Bruno Grouiez, Michel Grutter, Abdelhamid Hamdouni, Sander Houweling, Neil Humpage, Nicole Jacobs, Sujong Jeong, Lilian Joly, Nicholas B. Jones, Denis Jouglet, Rigel Kivi, Ralph Kleinschek, Morgan Lopez, Diogo J. Medeiros, Isamu Morino, Nasrin Mostafavipak, Astrid Müller, Hirofumi Ohyama, Paul I. Palmer, Mahesh Pathakoti, David F. Pollard, Uwe Raffalski, Michel Ramonet, Robbie Ramsay, Mahesh Kumar Sha, Kei Shiomi, William Simpson, Wolfgang Stremme, Youwen Sun, Hiroshi Tanimoto, Yao Té, Gizaw Mengistu Tsidu, Voltaire A. Velazco, Felix Vogel, Masataka Watanabe, Chong Wei, Debra Wunch, Marcia Yamasoe, Lu Zhang, and Johannes Orphal
Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022, https://doi.org/10.5194/amt-15-2433-2022, 2022
Short summary
Short summary
Space-borne greenhouse gas missions require ground-based validation networks capable of providing fiducial reference measurements. Here, considerable refinements of the calibration procedures for the COllaborative Carbon Column Observing Network (COCCON) are presented. Laboratory and solar side-by-side procedures for the characterization of the spectrometers have been refined and extended. Revised calibration factors for XCO2, XCO and XCH4 are provided, incorporating 47 new spectrometers.
Edward Malina, Ben Veihelmann, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, and Isamu Morino
Atmos. Meas. Tech., 15, 2377–2406, https://doi.org/10.5194/amt-15-2377-2022, https://doi.org/10.5194/amt-15-2377-2022, 2022
Short summary
Short summary
Methane retrievals from remote sensing instruments are fundamentally based on spectroscopic parameters, which indicate spectral-line positions, and their characteristics. These parameters are stored in several databases that vary in their make-up. Here we assess how concentrations of methane isotopologues measured from the same Total Carbon Column Observing Network (TCCON) instruments vary across a range of spectral windows using different spectroscopic databases and comment on the implications.
Carlos Alberti, Qiansi Tu, Frank Hase, Maria V. Makarova, Konstantin Gribanov, Stefani C. Foka, Vyacheslav Zakharov, Thomas Blumenstock, Michael Buchwitz, Christopher Diekmann, Benjamin Ertl, Matthias M. Frey, Hamud Kh. Imhasin, Dmitry V. Ionov, Farahnaz Khosrawi, Sergey I. Osipov, Maximilian Reuter, Matthias Schneider, and Thorsten Warneke
Atmos. Meas. Tech., 15, 2199–2229, https://doi.org/10.5194/amt-15-2199-2022, https://doi.org/10.5194/amt-15-2199-2022, 2022
Short summary
Short summary
Satellite and ground-based observations at high latitudes are much sparser than at low or mid latitudes, which makes direct coincident comparisons between remote-sensing observations more difficult. Therefore, a method of scaling continuous CAMS model data to the ground-based observations is developed and used for creating virtual COCCON observations. These adjusted CAMS data are then used for satellite inter-comparison, showing good agreement in both Peterhof and Yekaterinburg cities.
Thomas von Clarmann, Steven Compernolle, and Frank Hase
Atmos. Meas. Tech., 15, 1145–1157, https://doi.org/10.5194/amt-15-1145-2022, https://doi.org/10.5194/amt-15-1145-2022, 2022
Short summary
Short summary
Contrary to the claims put forward in
Evaluation of measurement data – Guide to the expression of uncertainty in measurementissued by the JCGM, the error concept and the uncertainty concept are the same. Arguments in favor of the contrary were found not to be compelling. Neither was any evidence presented that
errorsand
uncertaintiesdefine a different relation between the measured and true values, nor is a Bayesian concept beyond the mere subjective probability referred to.
Matthias Schneider, Benjamin Ertl, Christopher J. Diekmann, Farahnaz Khosrawi, Andreas Weber, Frank Hase, Michael Höpfner, Omaira E. García, Eliezer Sepúlveda, and Douglas Kinnison
Earth Syst. Sci. Data, 14, 709–742, https://doi.org/10.5194/essd-14-709-2022, https://doi.org/10.5194/essd-14-709-2022, 2022
Short summary
Short summary
We present atmospheric H2O, HDO / H2O ratio, N2O, CH4, and HNO3 data generated by the MUSICA IASI processor using thermal nadir spectra measured by the IASI satellite instrument. The data have global daily coverage and are available for the period between October 2014 and June 2021. Multiple possibilities of data reuse are offered by providing each individual data product together with information about retrieval settings and the products' uncertainty and vertical representativeness.
Thomas E. Taylor, Christopher W. O'Dell, David Crisp, Akhiko Kuze, Hannakaisa Lindqvist, Paul O. Wennberg, Abhishek Chatterjee, Michael Gunson, Annmarie Eldering, Brendan Fisher, Matthäus Kiel, Robert R. Nelson, Aronne Merrelli, Greg Osterman, Frédéric Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Cheng Liu, Martine De Mazière, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Matthias Schneider, Coleen M. Roehl, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, and Debra Wunch
Earth Syst. Sci. Data, 14, 325–360, https://doi.org/10.5194/essd-14-325-2022, https://doi.org/10.5194/essd-14-325-2022, 2022
Short summary
Short summary
We provide an analysis of an 11-year record of atmospheric carbon dioxide (CO2) concentrations derived using an optimal estimation retrieval algorithm on measurements made by the GOSAT satellite. The new product (version 9) shows improvement over the previous version (v7.3) as evaluated against independent estimates of CO2 from ground-based sensors and atmospheric inversion systems. We also compare the new GOSAT CO2 values to collocated estimates from NASA's Orbiting Carbon Observatory-2.
Qiansi Tu, Frank Hase, Matthias Schneider, Omaira García, Thomas Blumenstock, Tobias Borsdorff, Matthias Frey, Farahnaz Khosrawi, Alba Lorente, Carlos Alberti, Juan J. Bustos, André Butz, Virgilio Carreño, Emilio Cuevas, Roger Curcoll, Christopher J. Diekmann, Darko Dubravica, Benjamin Ertl, Carme Estruch, Sergio Fabián León-Luis, Carlos Marrero, Josep-Anton Morgui, Ramón Ramos, Christian Scharun, Carsten Schneider, Eliezer Sepúlveda, Carlos Toledano, and Carlos Torres
Atmos. Chem. Phys., 22, 295–317, https://doi.org/10.5194/acp-22-295-2022, https://doi.org/10.5194/acp-22-295-2022, 2022
Short summary
Short summary
We use different methane ground- and space-based remote sensing data sets for investigating the emission strength of three waste disposal sites close to Madrid. We present a method that uses wind-assigned anomalies for deriving emission strengths from satellite data and estimate their uncertainty to 9–14 %. The emission strengths estimated from the remote sensing data sets are significantly larger than the values published in the official register.
Nicole Jacobs, William R. Simpson, Kelly A. Graham, Christopher Holmes, Frank Hase, Thomas Blumenstock, Qiansi Tu, Matthias Frey, Manvendra K. Dubey, Harrison A. Parker, Debra Wunch, Rigel Kivi, Pauli Heikkinen, Justus Notholt, Christof Petri, and Thorsten Warneke
Atmos. Chem. Phys., 21, 16661–16687, https://doi.org/10.5194/acp-21-16661-2021, https://doi.org/10.5194/acp-21-16661-2021, 2021
Short summary
Short summary
Spatial patterns of carbon dioxide seasonal cycle amplitude and summer drawdown timing derived from the OCO-2 satellite over northern high latitudes agree well with corresponding estimates from two models. The Asian boreal forest is anomalous with the largest amplitude and earliest seasonal drawdown. Modeled land contact tracers suggest that accumulated CO2 exchanges during atmospheric transport play a major role in shaping carbon dioxide seasonality in northern high-latitude regions.
Christopher J. Diekmann, Matthias Schneider, Benjamin Ertl, Frank Hase, Omaira García, Farahnaz Khosrawi, Eliezer Sepúlveda, Peter Knippertz, and Peter Braesicke
Earth Syst. Sci. Data, 13, 5273–5292, https://doi.org/10.5194/essd-13-5273-2021, https://doi.org/10.5194/essd-13-5273-2021, 2021
Short summary
Short summary
The joint analysis of different stable water isotopes in water vapour is a powerful tool for investigating atmospheric moisture pathways. This paper presents a novel global and multi-annual dataset of H2O and HDO in mid-tropospheric water vapour by using data from the satellite sensor Metop/IASI. Due to its unique combination of coverage and resolution in space and time, this dataset is highly promising for studying the hydrological cycle and its representation in weather and climate models.
Omaira E. García, Matthias Schneider, Eliezer Sepúlveda, Frank Hase, Thomas Blumenstock, Emilio Cuevas, Ramón Ramos, Jochen Gross, Sabine Barthlott, Amelie N. Röhling, Esther Sanromá, Yenny González, Ángel J. Gómez-Peláez, Mónica Navarro-Comas, Olga Puentedura, Margarita Yela, Alberto Redondas, Virgilio Carreño, Sergio F. León-Luis, Enrique Reyes, Rosa D. García, Pedro P. Rivas, Pedro M. Romero-Campos, Carlos Torres, Natalia Prats, Miguel Hernández, and César López
Atmos. Chem. Phys., 21, 15519–15554, https://doi.org/10.5194/acp-21-15519-2021, https://doi.org/10.5194/acp-21-15519-2021, 2021
Short summary
Short summary
This paper analyses the potential of ground-based Fourier transform infrared (FTIR) solar observations to monitor atmospheric gaseous composition and investigate multiple climate processes. To this end, this work reviews the FTIR programme of one of most relevant ground-based FTIR stations at a global scale, the subtropical Izaña Observatory (IZO, Spain), going over its history during its first 20 years of operation (1999–2018) and exploring its great value for long-term climate research.
Mahesh Kumar Sha, Bavo Langerock, Jean-François L. Blavier, Thomas Blumenstock, Tobias Borsdorff, Matthias Buschmann, Angelika Dehn, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Michel Grutter, James W. Hannigan, Frank Hase, Pauli Heikkinen, Christian Hermans, Laura T. Iraci, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Nicolas Kumps, Jochen Landgraf, Alba Lorente, Emmanuel Mahieu, Maria V. Makarova, Johan Mellqvist, Jean-Marc Metzger, Isamu Morino, Tomoo Nagahama, Justus Notholt, Hirofumi Ohyama, Ivan Ortega, Mathias Palm, Christof Petri, David F. Pollard, Markus Rettinger, John Robinson, Sébastien Roche, Coleen M. Roehl, Amelie N. Röhling, Constantina Rousogenous, Matthias Schneider, Kei Shiomi, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, Osamu Uchino, Voltaire A. Velazco, Corinne Vigouroux, Mihalis Vrekoussis, Pucai Wang, Thorsten Warneke, Tyler Wizenberg, Debra Wunch, Shoma Yamanouchi, Yang Yang, and Minqiang Zhou
Atmos. Meas. Tech., 14, 6249–6304, https://doi.org/10.5194/amt-14-6249-2021, https://doi.org/10.5194/amt-14-6249-2021, 2021
Short summary
Short summary
This paper presents, for the first time, Sentinel-5 Precursor methane and carbon monoxide validation results covering a period from November 2017 to September 2020. For this study, we used global TCCON and NDACC-IRWG network data covering a wide range of atmospheric and surface conditions across different terrains. We also show the influence of a priori alignment, smoothing uncertainties and the sensitivity of the validation results towards the application of advanced co-location criteria.
Taylor S. Jones, Jonathan E. Franklin, Jia Chen, Florian Dietrich, Kristian D. Hajny, Johannes C. Paetzold, Adrian Wenzel, Conor Gately, Elaine Gottlieb, Harrison Parker, Manvendra Dubey, Frank Hase, Paul B. Shepson, Levi H. Mielke, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 13131–13147, https://doi.org/10.5194/acp-21-13131-2021, https://doi.org/10.5194/acp-21-13131-2021, 2021
Short summary
Short summary
Methane emissions from leaks in natural gas pipes are often a large source in urban areas, but they are difficult to measure on a city-wide scale. Here we use an array of innovative methane sensors distributed around the city of Indianapolis and a new method of combining their data with an atmospheric model to accurately determine the magnitude of these emissions, which are about 70 % larger than predicted. This method can serve as a framework for cities trying to account for their emissions.
Matthias M. Frey, Frank Hase, Thomas Blumenstock, Darko Dubravica, Jochen Groß, Frank Göttsche, Martin Handjaba, Petrus Amadhila, Roland Mushi, Isamu Morino, Kei Shiomi, Mahesh Kumar Sha, Martine de Mazière, and David F. Pollard
Atmos. Meas. Tech., 14, 5887–5911, https://doi.org/10.5194/amt-14-5887-2021, https://doi.org/10.5194/amt-14-5887-2021, 2021
Short summary
Short summary
In this study, we present measurements of carbon dioxide, methane and carbon monoxide from a recently established site in Gobabeb, Namibia. Gobabeb is the first site observing these gases on the African mainland and improves the global coverage of measurement sites. Gobabeb is a hyperarid desert site, offering unique characteristics. Measurements started 2015 as part of the COllaborative Carbon Column Observing Network. We compare our results with other datasets and find a good agreement.
Rebecca D. Kutzner, Juan Cuesta, Pascale Chelin, Jean-Eudes Petit, Mokhtar Ray, Xavier Landsheere, Benoît Tournadre, Jean-Charles Dupont, Amandine Rosso, Frank Hase, Johannes Orphal, and Matthias Beekmann
Atmos. Chem. Phys., 21, 12091–12111, https://doi.org/10.5194/acp-21-12091-2021, https://doi.org/10.5194/acp-21-12091-2021, 2021
Short summary
Short summary
Our work investigates the diurnal evolution of atmospheric ammonia concentrations during a major pollution event. It analyses it in regard of both chemical (gas–particle conversion) and physical (vertical mixing, meteorology) processes in the atmosphere. These mechanisms are key for understanding the evolution of the physicochemical state of the atmosphere; therefore, it clearly fits into the scope of Atmospheric Chemistry and Physics.
Farahnaz Khosrawi, Kinya Toride, Kei Yoshimura, Christopher J. Diekmann, Benjamin Ertl, Frank Hase, and Matthias Schneider
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-49, https://doi.org/10.5194/wcd-2021-49, 2021
Revised manuscript not accepted
Short summary
Short summary
We assess with an Observation System Simulation Experiment the potential of mid-tropospheric water isotopologue data for constraining uncertainties in meteorological analysis fields in the tropics. Our assimilation experiments indicate that isotopologue observations have the potential to reduce the uncertainties of diabatic heating rates and meteorological variables in the tropics and in consequence offer potential for improving meteorological analysis in the tropical regions.
Dmitry V. Ionov, Maria V. Makarova, Frank Hase, Stefani C. Foka, Vladimir S. Kostsov, Carlos Alberti, Thomas Blumenstock, Thorsten Warneke, and Yana A. Virolainen
Atmos. Chem. Phys., 21, 10939–10963, https://doi.org/10.5194/acp-21-10939-2021, https://doi.org/10.5194/acp-21-10939-2021, 2021
Short summary
Short summary
Megacities are a significant source of emissions of various substances in the atmosphere, including carbon dioxide, which is the most important anthropogenic greenhouse gas. In 2019–2020, the Emission Monitoring Mobile Experiment was carried out in St Petersburg, which is the second-largest industrial city in Russia. The results of this experiment, coupled with numerical modelling, helped to estimate the amount of CO2 emitted by the city. This value was twice as high as predicted.
Ilya Stanevich, Dylan B. A. Jones, Kimberly Strong, Martin Keller, Daven K. Henze, Robert J. Parker, Hartmut Boesch, Debra Wunch, Justus Notholt, Christof Petri, Thorsten Warneke, Ralf Sussmann, Matthias Schneider, Frank Hase, Rigel Kivi, Nicholas M. Deutscher, Voltaire A. Velazco, Kaley A. Walker, and Feng Deng
Atmos. Chem. Phys., 21, 9545–9572, https://doi.org/10.5194/acp-21-9545-2021, https://doi.org/10.5194/acp-21-9545-2021, 2021
Short summary
Short summary
We explore the utility of a weak-constraint (WC) four-dimensional variational (4D-Var) data assimilation scheme for mitigating systematic errors in methane simulation in the GEOS-Chem model. We use data from the Greenhouse Gases Observing Satellite (GOSAT) and show that, compared to the traditional 4D-Var approach, the WC scheme improves the agreement between the model and independent observations. We find that the WC corrections to the model provide insight into the source of the errors.
Matthieu Dogniaux, Cyril Crevoisier, Raymond Armante, Virginie Capelle, Thibault Delahaye, Vincent Cassé, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. Garcia, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Justus Notholt, David F. Pollard, Coleen M. Roehl, Kei Shiomi, Kimberly Strong, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 4689–4706, https://doi.org/10.5194/amt-14-4689-2021, https://doi.org/10.5194/amt-14-4689-2021, 2021
Short summary
Short summary
We present the Adaptable 4A Inversion (5AI), an implementation of the optimal estimation (OE) algorithm, relying on the Automatized Atmospheric Absorption Atlas (4A/OP) radiative transfer model, that enables the retrieval of greenhouse gas atmospheric weighted columns from infrared measurements. It is tested on a sample of Orbiting Carbon Observatory-2 observations, and its results satisfactorily compare to several reference products, thus showing the reliability of 5AI OE implementation.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, James R. Podolske, David F. Pollard, Mahesh Kumar Sha, Kei Shiomi, Ralf Sussmann, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 3837–3869, https://doi.org/10.5194/amt-14-3837-2021, https://doi.org/10.5194/amt-14-3837-2021, 2021
Short summary
Short summary
We present the first GOSAT and GOSAT-2 XCO2 data derived with the FOCAL retrieval algorithm. Comparisons of the GOSAT-FOCAL product with other data reveal long-term agreement within about 1 ppm over 1 decade, differences in seasonal variations of about 0.5 ppm, and a mean regional bias to ground-based TCCON data of 0.56 ppm with a mean scatter of 1.89 ppm. GOSAT-2-FOCAL data are preliminary only, but first comparisons show that they compare well with the GOSAT-FOCAL results and TCCON.
Qiansi Tu, Frank Hase, Thomas Blumenstock, Matthias Schneider, Andreas Schneider, Rigel Kivi, Pauli Heikkinen, Benjamin Ertl, Christopher Diekmann, Farahnaz Khosrawi, Michael Sommer, Tobias Borsdorff, and Uwe Raffalski
Atmos. Meas. Tech., 14, 1993–2011, https://doi.org/10.5194/amt-14-1993-2021, https://doi.org/10.5194/amt-14-1993-2021, 2021
Short summary
Short summary
We compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from the COllaborative Carbon Column Observing Network (COCCON) with two co-located ground-based spectrometers as references at two boreal sites. Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This is the first published study applying COCCON for MUSICA IASI and TROPOMI validation.
Thomas Blumenstock, Frank Hase, Axel Keens, Denis Czurlok, Orfeo Colebatch, Omaira Garcia, David W. T. Griffith, Michel Grutter, James W. Hannigan, Pauli Heikkinen, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Erik Lutsch, Maria Makarova, Hamud K. Imhasin, Johan Mellqvist, Isamu Morino, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Uwe Raffalski, Markus Rettinger, John Robinson, Matthias Schneider, Christian Servais, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Voltaire A. Velazco
Atmos. Meas. Tech., 14, 1239–1252, https://doi.org/10.5194/amt-14-1239-2021, https://doi.org/10.5194/amt-14-1239-2021, 2021
Short summary
Short summary
This study investigates the level of channeling (optical resonances) of each FTIR spectrometer within the Network for the Detection of Atmospheric Composition Change (NDACC). Since the air gap of the beam splitter is a significant source of channeling, we propose new beam splitters with an increased wedge of the air gap. This study shows the potential for reducing channeling in the FTIR spectrometers operated by the NDACC, thereby increasing the quality of recorded spectra across the network.
Maria V. Makarova, Carlos Alberti, Dmitry V. Ionov, Frank Hase, Stefani C. Foka, Thomas Blumenstock, Thorsten Warneke, Yana A. Virolainen, Vladimir S. Kostsov, Matthias Frey, Anatoly V. Poberovskii, Yuri M. Timofeyev, Nina N. Paramonova, Kristina A. Volkova, Nikita A. Zaitsev, Egor Y. Biryukov, Sergey I. Osipov, Boris K. Makarov, Alexander V. Polyakov, Viktor M. Ivakhov, Hamud Kh. Imhasin, and Eugene F. Mikhailov
Atmos. Meas. Tech., 14, 1047–1073, https://doi.org/10.5194/amt-14-1047-2021, https://doi.org/10.5194/amt-14-1047-2021, 2021
Short summary
Short summary
Fundamental understanding of the major processes driving climate change is a key problem which is to be solved, not only on a global but also on a regional scale. The Emission Monitoring Mobile Experiment (EMME) carried out in 2019 with two portable Bruker EM27/SUN spectrometers as core instruments provided new information on the emissions of greenhouse (CO2, CH4) and reactive (CO, NOx) gases from St. Petersburg (Russia), which is the largest northern megacity with a population of 5 million.
Marvin Knapp, Ralph Kleinschek, Frank Hase, Anna Agustí-Panareda, Antje Inness, Jérôme Barré, Jochen Landgraf, Tobias Borsdorff, Stefan Kinne, and André Butz
Earth Syst. Sci. Data, 13, 199–211, https://doi.org/10.5194/essd-13-199-2021, https://doi.org/10.5194/essd-13-199-2021, 2021
Short summary
Short summary
We developed a shipborne variant of a remote sensing spectrometer for direct sunlight measurements of column-averaged atmospheric mixing ratios of carbon dioxide, methane, and carbon monoxide. The instrument was deployed on the research vessel Sonne during a longitudinal transect over the Pacific during June 2019. The campaign yielded more than 32 000 observations which compare excellently to atmospheric composition data from a state-of-the-art model (CAMS) and satellite observations (TROPOMI).
Claudia Rivera Cárdenas, Cesar Guarín, Wolfgang Stremme, Martina M. Friedrich, Alejandro Bezanilla, Diana Rivera Ramos, Cristina A. Mendoza-Rodríguez, Michel Grutter, Thomas Blumenstock, and Frank Hase
Atmos. Meas. Tech., 14, 595–613, https://doi.org/10.5194/amt-14-595-2021, https://doi.org/10.5194/amt-14-595-2021, 2021
Alba Lorente, Tobias Borsdorff, Andre Butz, Otto Hasekamp, Joost aan de Brugh, Andreas Schneider, Lianghai Wu, Frank Hase, Rigel Kivi, Debra Wunch, David F. Pollard, Kei Shiomi, Nicholas M. Deutscher, Voltaire A. Velazco, Coleen M. Roehl, Paul O. Wennberg, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 14, 665–684, https://doi.org/10.5194/amt-14-665-2021, https://doi.org/10.5194/amt-14-665-2021, 2021
Short summary
Short summary
TROPOMI aboard Sentinel-5P satellite provides methane (CH4) measurements with exceptional temporal and spatial resolution. The study describes a series of improvements developed to retrieve CH4 from TROPOMI. The updated CH4 product features (among others) a more accurate a posteriori correction derived independently of any reference data. The validation of the improved data product shows good agreement with ground-based and satellite measurements, which highlights the quality of the TROPOMI CH4.
Robert J. Parker, Alex Webb, Hartmut Boesch, Peter Somkuti, Rocio Barrio Guillo, Antonio Di Noia, Nikoleta Kalaitzi, Jasdeep S. Anand, Peter Bergamaschi, Frederic Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Coleen Roehl, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Thorsten Warneke, Paul O. Wennberg, and Debra Wunch
Earth Syst. Sci. Data, 12, 3383–3412, https://doi.org/10.5194/essd-12-3383-2020, https://doi.org/10.5194/essd-12-3383-2020, 2020
Short summary
Short summary
This work presents the latest release of the University of Leicester GOSAT methane data and acts as the definitive description of this dataset. We detail the processing, validation and evaluation involved in producing these data and highlight its many applications. With now over a decade of global atmospheric methane observations, this dataset has helped, and will continue to help, us better understand the global methane budget and investigate how it may respond to a future changing climate.
Erik Lutsch, Kimberly Strong, Dylan B. A. Jones, Thomas Blumenstock, Stephanie Conway, Jenny A. Fisher, James W. Hannigan, Frank Hase, Yasuko Kasai, Emmanuel Mahieu, Maria Makarova, Isamu Morino, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Anatoly V. Poberovskii, Ralf Sussmann, and Thorsten Warneke
Atmos. Chem. Phys., 20, 12813–12851, https://doi.org/10.5194/acp-20-12813-2020, https://doi.org/10.5194/acp-20-12813-2020, 2020
Short summary
Short summary
This paper describes the use of a network of 10 Arctic and midlatitude ground-based FTIR measurement sites to detect enhancements of the wildfire tracers carbon monoxide, hydrogen cyanide, and ethane from 2003 to 2018. A tagged CO GEOS-Chem simulation is used for source attribution and to evaluate the relative contribution of CO sources to the FTIR measurements. The use of FTIR measurements allowed for the emission ratios of hydrogen cyanide and ethane to be quantified.
Ingeborg Levin, Ute Karstens, Markus Eritt, Fabian Maier, Sabrina Arnold, Daniel Rzesanke, Samuel Hammer, Michel Ramonet, Gabriela Vítková, Sebastien Conil, Michal Heliasz, Dagmar Kubistin, and Matthias Lindauer
Atmos. Chem. Phys., 20, 11161–11180, https://doi.org/10.5194/acp-20-11161-2020, https://doi.org/10.5194/acp-20-11161-2020, 2020
Short summary
Short summary
Based on observations and Stochastic Time-Inverted Lagrangian Transport (STILT) footprint modelling, a sampling strategy has been developed for tall tower stations of the Integrated Carbon Observation System (ICOS) research infrastructure atmospheric station network. This strategy allows independent quality control of in situ measurements, provides representative coverage of the influence area of the sites, and is capable of automated targeted sampling of fossil fuel CO2 emission hotspots.
Nicole Jacobs, William R. Simpson, Debra Wunch, Christopher W. O'Dell, Gregory B. Osterman, Frank Hase, Thomas Blumenstock, Qiansi Tu, Matthias Frey, Manvendra K. Dubey, Harrison A. Parker, Rigel Kivi, and Pauli Heikkinen
Atmos. Meas. Tech., 13, 5033–5063, https://doi.org/10.5194/amt-13-5033-2020, https://doi.org/10.5194/amt-13-5033-2020, 2020
Short summary
Short summary
The boreal forest is the largest seasonally varying biospheric CO2-exchange region on Earth. This region is also undergoing amplified climate warming, leading to concerns about the potential for altered regional carbon exchange. Satellite missions, such as the Orbiting Carbon Observatory-2 (OCO-2) project, can measure CO2 abundance over the boreal forest but need validation for the assurance of accuracy. Therefore, we carried out a ground-based validation of OCO-2 CO2 data at three locations.
Mahesh Kumar Sha, Martine De Mazière, Justus Notholt, Thomas Blumenstock, Huilin Chen, Angelika Dehn, David W. T. Griffith, Frank Hase, Pauli Heikkinen, Christian Hermans, Alex Hoffmann, Marko Huebner, Nicholas Jones, Rigel Kivi, Bavo Langerock, Christof Petri, Francis Scolas, Qiansi Tu, and Damien Weidmann
Atmos. Meas. Tech., 13, 4791–4839, https://doi.org/10.5194/amt-13-4791-2020, https://doi.org/10.5194/amt-13-4791-2020, 2020
Short summary
Short summary
We present the results of the 2017 FRM4GHG campaign at the Sodankylä TCCON site aimed at characterising the assessment of several low-cost portable instruments for precise solar absorption measurements of column-averaged dry-air mole fractions of CO2, CH4, and CO. The test instruments provided stable and precise measurements of these gases with quantified small biases. This qualifies the instruments to complement TCCON and expand the global coverage of ground-based measurements of these gases.
Qiansi Tu, Frank Hase, Thomas Blumenstock, Rigel Kivi, Pauli Heikkinen, Mahesh Kumar Sha, Uwe Raffalski, Jochen Landgraf, Alba Lorente, Tobias Borsdorff, Huilin Chen, Florian Dietrich, and Jia Chen
Atmos. Meas. Tech., 13, 4751–4771, https://doi.org/10.5194/amt-13-4751-2020, https://doi.org/10.5194/amt-13-4751-2020, 2020
Short summary
Short summary
Two COCCON instruments are used to observe multiyear greenhouse gases in boreal areas and are compared with the CAMS analysis and S5P satellite data. These three datasets predict greenhouse gas gradients with reasonable agreement. The results indicate that the COCCON instrument has the capability of measuring gradients on regional scales, and observations performed with the portable spectrometers can contribute to inferring sources and sinks and to validating spaceborne greenhouse gases.
Ilya Stanevich, Dylan B. A. Jones, Kimberly Strong, Robert J. Parker, Hartmut Boesch, Debra Wunch, Justus Notholt, Christof Petri, Thorsten Warneke, Ralf Sussmann, Matthias Schneider, Frank Hase, Rigel Kivi, Nicholas M. Deutscher, Voltaire A. Velazco, Kaley A. Walker, and Feng Deng
Geosci. Model Dev., 13, 3839–3862, https://doi.org/10.5194/gmd-13-3839-2020, https://doi.org/10.5194/gmd-13-3839-2020, 2020
Short summary
Short summary
Systematic errors in atmospheric models pose a challenge for inverse modeling studies of methane (CH4) emissions. We evaluated the CH4 simulation in the GEOS-Chem model at the horizontal resolutions of 4° × 5° and 2° × 2.5°. Our analysis identified resolution-dependent biases in the model, which we attributed to discrepancies between the two model resolutions in vertical transport in the troposphere and in stratosphere–troposphere exchange.
Temesgen Yirdaw Berhe, Gizaw Mengistu Tsidu, Thomas Blumenstock, Frank Hase, and Gabriele P. Stiller
Atmos. Meas. Tech., 13, 4079–4096, https://doi.org/10.5194/amt-13-4079-2020, https://doi.org/10.5194/amt-13-4079-2020, 2020
Short summary
Short summary
The retrieved CH4 and N2O VMR and column amounts from Addis Ababa, tropical site, are found to exhibit very good agreement with all coincident satellite observations (MIPAS, MLS, and AIRS). Furthermore, the bias obtained from the comparison is comparable to the precision of FTIR measurement, which allows the use of data in further scientific studies as it represents a unique environment of tropical Africa, a region poorly investigated in the past.
Benoît Tournadre, Pascale Chelin, Mokhtar Ray, Juan Cuesta, Rebecca D. Kutzner, Xavier Landsheere, Audrey Fortems-Cheiney, Jean-Marie Flaud, Frank Hase, Thomas Blumenstock, Johannes Orphal, Camille Viatte, and Claude Camy-Peyret
Atmos. Meas. Tech., 13, 3923–3937, https://doi.org/10.5194/amt-13-3923-2020, https://doi.org/10.5194/amt-13-3923-2020, 2020
Short summary
Short summary
We present some results about ammonia pollution because NH3, mainly emitted by agricultural activities, is a precursor of fine particles. This study is based on the first multiyear time series (2009–2017) of atmospheric NH3 ground-based measurements over the Paris megacity. This pollutant varies seasonally by 2 orders of magnitude, especially in spring. We highlight that this kind of instrument could be easily installed and is very useful for analyzing NH3 in other megacities or source regions.
Arne Babenhauserheide, Frank Hase, and Isamu Morino
Atmos. Meas. Tech., 13, 2697–2710, https://doi.org/10.5194/amt-13-2697-2020, https://doi.org/10.5194/amt-13-2697-2020, 2020
Short summary
Short summary
This paper demonstrates that the carbon dioxide emissions of Tokyo can be estimated from long-term ground-based measurements of column-averaged atmospheric carbon dioxide abundances recorded at the TCCON site Tsukuba.
Maximilian Reuter, Michael Buchwitz, Oliver Schneising, Stefan Noël, Heinrich Bovensmann, John P. Burrows, Hartmut Boesch, Antonio Di Noia, Jasdeep Anand, Robert J. Parker, Peter Somkuti, Lianghai Wu, Otto P. Hasekamp, Ilse Aben, Akihiko Kuze, Hiroshi Suto, Kei Shiomi, Yukio Yoshida, Isamu Morino, David Crisp, Christopher W. O'Dell, Justus Notholt, Christof Petri, Thorsten Warneke, Voltaire A. Velazco, Nicholas M. Deutscher, David W. T. Griffith, Rigel Kivi, David F. Pollard, Frank Hase, Ralf Sussmann, Yao V. Té, Kimberly Strong, Sébastien Roche, Mahesh K. Sha, Martine De Mazière, Dietrich G. Feist, Laura T. Iraci, Coleen M. Roehl, Christian Retscher, and Dinand Schepers
Atmos. Meas. Tech., 13, 789–819, https://doi.org/10.5194/amt-13-789-2020, https://doi.org/10.5194/amt-13-789-2020, 2020
Short summary
Short summary
We present new satellite-derived data sets of atmospheric carbon dioxide (CO2) and methane (CH4). The data products are column-averaged dry-air mole fractions of CO2 and CH4, denoted XCO2 and XCH4. The products cover the years 2003–2018 and are merged Level 2 (satellite footprints) and merged Level 3 (gridded at monthly time and 5° x 5° spatial resolution) products obtained from combining several individual sensor products. We present the merging algorithms and product validation results.
Jonas Simon Wilzewski, Anke Roiger, Johan Strandgren, Jochen Landgraf, Dietrich G. Feist, Voltaire A. Velazco, Nicholas M. Deutscher, Isamu Morino, Hirofumi Ohyama, Yao Té, Rigel Kivi, Thorsten Warneke, Justus Notholt, Manvendra Dubey, Ralf Sussmann, Markus Rettinger, Frank Hase, Kei Shiomi, and André Butz
Atmos. Meas. Tech., 13, 731–745, https://doi.org/10.5194/amt-13-731-2020, https://doi.org/10.5194/amt-13-731-2020, 2020
Short summary
Short summary
Through spectral degradation of GOSAT measurements in the 1.6 and 2.0 μm spectral bands, we mimic a single-band, passive satellite sensor for monitoring of CO2 emissions at fine spatial scales. We compare retrievals of XCO2 from these bands to TCCON and native GOSAT retrievals. At spectral resolutions near 1.3 nm, XCO2 retrievals from both bands show promising performance, but the 2.0 μm band is favorable due to better noise performance and the potential to retrieve some aerosol information.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Franziska Aemisegger, Dietrich G. Feist, Rigel Kivi, Frank Hase, Matthias Schneider, and Jochen Landgraf
Atmos. Meas. Tech., 13, 85–100, https://doi.org/10.5194/amt-13-85-2020, https://doi.org/10.5194/amt-13-85-2020, 2020
Short summary
Short summary
This paper presents a new H2O/HDO data set from TROPOMI short-wave infrared measurements. It is validated against recent ground-based FTIR measurements from the TCCON network. A bias in TCCON HDO (which is not verified) is corrected by fitting a correction factor for the HDO column to match MUSICA δD for common observations. The use of the new TROPOMI data set is demonstrated using a case study of a blocking anticyclone over Europe in July 2018.
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, John P. Burrows, Tobias Borsdorff, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Christian Hermans, Laura T. Iraci, Rigel Kivi, Jochen Landgraf, Isamu Morino, Justus Notholt, Christof Petri, David F. Pollard, Sébastien Roche, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Voltaire A. Velazco, Thorsten Warneke, and Debra Wunch
Atmos. Meas. Tech., 12, 6771–6802, https://doi.org/10.5194/amt-12-6771-2019, https://doi.org/10.5194/amt-12-6771-2019, 2019
Short summary
Short summary
We introduce an algorithm that is used to simultaneously derive the abundances of the important atmospheric constituents carbon monoxide and methane from the TROPOMI instrument onboard the Sentinel-5 Precursor satellite, which enables the determination of both gases with an unprecedented level of detail on a global scale. The quality of the resulting data sets is assessed and the first results are presented.
Susan S. Kulawik, Sean Crowell, David Baker, Junjie Liu, Kathryn McKain, Colm Sweeney, Sebastien C. Biraud, Steve Wofsy, Christopher W. O'Dell, Paul O. Wennberg, Debra Wunch, Coleen M. Roehl, Nicholas M. Deutscher, Matthäus Kiel, David W. T. Griffith, Voltaire A. Velazco, Justus Notholt, Thorsten Warneke, Christof Petri, Martine De Mazière, Mahesh K. Sha, Ralf Sussmann, Markus Rettinger, Dave F. Pollard, Isamu Morino, Osamu Uchino, Frank Hase, Dietrich G. Feist, Sébastien Roche, Kimberly Strong, Rigel Kivi, Laura Iraci, Kei Shiomi, Manvendra K. Dubey, Eliezer Sepulveda, Omaira Elena Garcia Rodriguez, Yao Té, Pascal Jeseck, Pauli Heikkinen, Edward J. Dlugokencky, Michael R. Gunson, Annmarie Eldering, David Crisp, Brendan Fisher, and Gregory B. Osterman
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-257, https://doi.org/10.5194/amt-2019-257, 2019
Publication in AMT not foreseen
Short summary
Short summary
This paper provides a benchmark of OCO-2 v8 and ACOS-GOSAT v7.3 XCO2 and lowermost tropospheric (LMT) errors. The paper focuses on the systematic errors and subtracts out validation, co-location, and random errors, looks at the correlation scale-length (spatially and temporally) of systematic errors, finding that the scale lengths are similar to bias correction scale-lengths. The assimilates of the bias correction term is used to place an error on fluxes estimates.
Jacob K. Hedelius, Tai-Long He, Dylan B. A. Jones, Bianca C. Baier, Rebecca R. Buchholz, Martine De Mazière, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Laura T. Iraci, Pascal Jeseck, Matthäus Kiel, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Sébastien Roche, Coleen M. Roehl, Matthias Schneider, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Colm Sweeney, Yao Té, Osamu Uchino, Voltaire A. Velazco, Wei Wang, Thorsten Warneke, Paul O. Wennberg, Helen M. Worden, and Debra Wunch
Atmos. Meas. Tech., 12, 5547–5572, https://doi.org/10.5194/amt-12-5547-2019, https://doi.org/10.5194/amt-12-5547-2019, 2019
Short summary
Short summary
We seek ways to improve the accuracy of column measurements of carbon monoxide (CO) – an important tracer of pollution – made from the MOPITT satellite instrument. We devise a filtering scheme which reduces the scatter and also eliminates bias among the MOPITT detectors. Compared to ground-based observations, MOPITT measurements are about 6 %–8 % higher. When MOPITT data are implemented in a global assimilation model, they tend to reduce the model mismatch with aircraft measurements.
Tobias Borsdorff, Joost aan de Brugh, Andreas Schneider, Alba Lorente, Manfred Birk, Georg Wagner, Rigel Kivi, Frank Hase, Dietrich G. Feist, Ralf Sussmann, Markus Rettinger, Debra Wunch, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 12, 5443–5455, https://doi.org/10.5194/amt-12-5443-2019, https://doi.org/10.5194/amt-12-5443-2019, 2019
Short summary
Short summary
The study presents possible improvements of the TROPOMI CO dataset, which is a primary product of ESA's Sentinel-5P mission. We discuss the use of different molecular spectroscopic databases in the CO retrieval, the induced biases between TROPOMI CO and TCCON validation measurements, and the latitudinally dependent bias between TROPOMI CO and the CAMS-IFS model. Additionally, two methods for the stripe correction of single TROPOMI CO orbits are presented.
Andreas Luther, Ralph Kleinschek, Leon Scheidweiler, Sara Defratyka, Mila Stanisavljevic, Andreas Forstmaier, Alexandru Dandocsi, Sebastian Wolff, Darko Dubravica, Norman Wildmann, Julian Kostinek, Patrick Jöckel, Anna-Leah Nickl, Theresa Klausner, Frank Hase, Matthias Frey, Jia Chen, Florian Dietrich, Jarosław Nȩcki, Justyna Swolkień, Andreas Fix, Anke Roiger, and André Butz
Atmos. Meas. Tech., 12, 5217–5230, https://doi.org/10.5194/amt-12-5217-2019, https://doi.org/10.5194/amt-12-5217-2019, 2019
Short summary
Short summary
Methane ventilated from hard coal mines in the Upper Silesian
Coal Basin in Poland is measured with a mobile Fourier transform spectrometer EM27/SUN. The instrument was mounted on a truck driving in stop-and-go patterns downwind of the methane sources. The emissions are estimated with the cross-sectional flux method. Calculated emissions are in broad agreement with the E-PRTR database. Wind-related errors on the methane estimates dominate the error budget and typically amount to 20 %.
Xinxu Zhao, Julia Marshall, Stephan Hachinger, Christoph Gerbig, Matthias Frey, Frank Hase, and Jia Chen
Atmos. Chem. Phys., 19, 11279–11302, https://doi.org/10.5194/acp-19-11279-2019, https://doi.org/10.5194/acp-19-11279-2019, 2019
Short summary
Short summary
The Weather Research and Forecasting model (WRF), coupled with greenhouse gas (GHG) modules (WRF-GHG), is considered to be a suitable basis for precise GHG transport analysis in urban areas, especially when combined with differential column methodology (DCM). DCM is an effective method not only for comparing models to observations independently of biases caused, for example, by initial conditions, but also for detecting and understanding sources of GHG emissions quantitatively in urban areas.
Temesgen Yirdaw Berhe, Gizaw Mengistu Tsidu, Thomas Blumenstock, Frank Hase, Thomas von Clarmann, Justus Notholt, and Emmanuel Mahieu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-209, https://doi.org/10.5194/amt-2019-209, 2019
Revised manuscript not accepted
Short summary
Short summary
This study aims to assess the latitudinal variation of MIPAS version
V5R_CH4_220 and V5R_CH4_224 uncertainty. Furthermore, we analyze the relationship between these uncertainties and the variability of water vapor. Mainly, the high uncertainty found in tropics for MIPAS CH4 220 is highly associated with variability of water vapour. However, this effect has been reduced in the new updated MIPAS CH4 224 datasets due to jointly fitted water profile with methane.
Debra Wunch, Dylan B. A. Jones, Geoffrey C. Toon, Nicholas M. Deutscher, Frank Hase, Justus Notholt, Ralf Sussmann, Thorsten Warneke, Jeroen Kuenen, Hugo Denier van der Gon, Jenny A. Fisher, and Joannes D. Maasakkers
Atmos. Chem. Phys., 19, 3963–3980, https://doi.org/10.5194/acp-19-3963-2019, https://doi.org/10.5194/acp-19-3963-2019, 2019
Short summary
Short summary
We used five atmospheric observatories in Europe measuring total column dry-air mole fractions of methane and carbon monoxide to infer methane emissions in the area between the observatories. We find that the methane emissions are overestimated by the state-of-the-art inventories, and that this is likely due, at least in part, to the inventory disaggregation. We find that there is significant uncertainty in the carbon monoxide inventories that requires further investigation.
Julian Kostinek, Anke Roiger, Kenneth J. Davis, Colm Sweeney, Joshua P. DiGangi, Yonghoon Choi, Bianca Baier, Frank Hase, Jochen Groß, Maximilian Eckl, Theresa Klausner, and André Butz
Atmos. Meas. Tech., 12, 1767–1783, https://doi.org/10.5194/amt-12-1767-2019, https://doi.org/10.5194/amt-12-1767-2019, 2019
Short summary
Short summary
We demonstrate the successful adaption of a laser-based spectrometer for airborne in situ trace gas measurements. The modified instrument allows for precise and simultaneous airborne observation of five climatologically relevant gases. We further report on instrument performance during a first field deployment over the eastern and central USA.
Felix R. Vogel, Matthias Frey, Johannes Staufer, Frank Hase, Grégoire Broquet, Irène Xueref-Remy, Frédéric Chevallier, Philippe Ciais, Mahesh Kumar Sha, Pascale Chelin, Pascal Jeseck, Christof Janssen, Yao Té, Jochen Groß, Thomas Blumenstock, Qiansi Tu, and Johannes Orphal
Atmos. Chem. Phys., 19, 3271–3285, https://doi.org/10.5194/acp-19-3271-2019, https://doi.org/10.5194/acp-19-3271-2019, 2019
Short summary
Short summary
Providing timely information on greenhouse gas emissions to stakeholders at sub-national scale is an emerging challenge and understanding urban CO2 levels is one key aspect. This study uses atmospheric observations of total column CO2 and compares them to numerical simulations to investigate CO2 levels in the Paris metropolitan area due to natural fluxes and anthropogenic emissions. Our measurements reveal the influence of locally added CO2, which our model is also able to predict.
Matthias Frey, Mahesh K. Sha, Frank Hase, Matthäus Kiel, Thomas Blumenstock, Roland Harig, Gregor Surawicz, Nicholas M. Deutscher, Kei Shiomi, Jonathan E. Franklin, Hartmut Bösch, Jia Chen, Michel Grutter, Hirofumi Ohyama, Youwen Sun, André Butz, Gizaw Mengistu Tsidu, Dragos Ene, Debra Wunch, Zhensong Cao, Omaira Garcia, Michel Ramonet, Felix Vogel, and Johannes Orphal
Atmos. Meas. Tech., 12, 1513–1530, https://doi.org/10.5194/amt-12-1513-2019, https://doi.org/10.5194/amt-12-1513-2019, 2019
Short summary
Short summary
In a 3.5-year long study, the long-term performance of a mobile EM27/SUN spectrometer, used for greenhouse gas observations, is checked with respect to a co-located reference spectrometer. We find that the EM27/SUN is stable on timescales of several years, qualifying it for permanent carbon cycle studies.
The performance of an ensemble of 30 EM27/SUN spectrometers was also tested in the framework of the COllaborative Carbon Column Observing Network (COCCON) and found to be very uniform.
Christopher W. O'Dell, Annmarie Eldering, Paul O. Wennberg, David Crisp, Michael R. Gunson, Brendan Fisher, Christian Frankenberg, Matthäus Kiel, Hannakaisa Lindqvist, Lukas Mandrake, Aronne Merrelli, Vijay Natraj, Robert R. Nelson, Gregory B. Osterman, Vivienne H. Payne, Thomas E. Taylor, Debra Wunch, Brian J. Drouin, Fabiano Oyafuso, Albert Chang, James McDuffie, Michael Smyth, David F. Baker, Sourish Basu, Frédéric Chevallier, Sean M. R. Crowell, Liang Feng, Paul I. Palmer, Mavendra Dubey, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, Coleen M. Roehl, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Osamu Uchino, and Voltaire A. Velazco
Atmos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, https://doi.org/10.5194/amt-11-6539-2018, 2018
Tobias Borsdorff, Joost aan de Brugh, Haili Hu, Otto Hasekamp, Ralf Sussmann, Markus Rettinger, Frank Hase, Jochen Gross, Matthias Schneider, Omaira Garcia, Wolfgang Stremme, Michel Grutter, Dietrich G. Feist, Sabrina G. Arnold, Martine De Mazière, Mahesh Kumar Sha, David F. Pollard, Matthäus Kiel, Coleen Roehl, Paul O. Wennberg, Geoffrey C. Toon, and Jochen Landgraf
Atmos. Meas. Tech., 11, 5507–5518, https://doi.org/10.5194/amt-11-5507-2018, https://doi.org/10.5194/amt-11-5507-2018, 2018
Short summary
Short summary
On 13 October 2017, the S5-P satellite was launched with TROPOMI as its only payload. One of the primary products is atmospheric CO observed with daily global coverage and spatial resolution of 7 × 7 km2. The new dataset allows the sensing of CO enhancements above cities and industrial areas and can track pollution transport from biomass burning regions. Through validation with ground-based TCCON measurements we show that the CO data product is already well within the mission requirement.
Corinne Vigouroux, Carlos Augusto Bauer Aquino, Maite Bauwens, Cornelis Becker, Thomas Blumenstock, Martine De Mazière, Omaira García, Michel Grutter, César Guarin, James Hannigan, Frank Hase, Nicholas Jones, Rigel Kivi, Dmitry Koshelev, Bavo Langerock, Erik Lutsch, Maria Makarova, Jean-Marc Metzger, Jean-François Müller, Justus Notholt, Ivan Ortega, Mathias Palm, Clare Paton-Walsh, Anatoly Poberovskii, Markus Rettinger, John Robinson, Dan Smale, Trissevgeni Stavrakou, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, and Geoffrey Toon
Atmos. Meas. Tech., 11, 5049–5073, https://doi.org/10.5194/amt-11-5049-2018, https://doi.org/10.5194/amt-11-5049-2018, 2018
Short summary
Short summary
A few ground-based stations have provided time series of HCHO columns until now, which was not optimal for providing good diagnostics for satellite or model validation. In this work, HCHO time series have been determined in a harmonized way at 21 stations ensuring, in addition to a better spatial and level of abundances coverage, that internal biases within the network have been minimized. This data set shows consistent good agreement with model data and is ready for future satellite validation.
Christian Borger, Matthias Schneider, Benjamin Ertl, Frank Hase, Omaira E. García, Michael Sommer, Michael Höpfner, Stephen A. Tjemkes, and Xavier Calbet
Atmos. Meas. Tech., 11, 4981–5006, https://doi.org/10.5194/amt-11-4981-2018, https://doi.org/10.5194/amt-11-4981-2018, 2018
Short summary
Short summary
In this paper MUSICA IASI tropospheric water vapour profile retrievals are evaluated by performing theoretical error assessments and comparisons to GRUAN radiosonde measurements. We show that the vertical water vapour distribution is well captured from 1 km above the ground up to the tropopause. Largest error sources are unrecognized clouds and uncertainties in atmospheric temperature, which can reach about 25 %.
Omaira E. García, Matthias Schneider, Benjamin Ertl, Eliezer Sepúlveda, Christian Borger, Christopher Diekmann, Andreas Wiegele, Frank Hase, Sabine Barthlott, Thomas Blumenstock, Uwe Raffalski, Angel Gómez-Peláez, Martin Steinbacher, Ludwig Ries, and Angel M. de Frutos
Atmos. Meas. Tech., 11, 4171–4215, https://doi.org/10.5194/amt-11-4171-2018, https://doi.org/10.5194/amt-11-4171-2018, 2018
Short summary
Short summary
This work presents the CH4 and N2O products of the MUSICA IASI processor. We analytically assess precisions of 1.5–3 %, good sensitivity in the UTLS region (for CH4 and N2O) and a possibility for retrieving free-tropospheric CH4 at low latitudes independently from CH4 in the UTLS. This is confirmed by comparison to HIPPO profile data (covering a large latitudinal range), continuous GAW data (covering 9 years) and NDACC FTIR data (covering 10 years and three different climate zones).
Lianghai Wu, Otto Hasekamp, Haili Hu, Jochen Landgraf, Andre Butz, Joost aan de Brugh, Ilse Aben, Dave F. Pollard, David W. T. Griffith, Dietrich G. Feist, Dmitry Koshelev, Frank Hase, Geoffrey C. Toon, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Laura Iraci, Matthias Schneider, Martine de Mazière, Ralf Sussmann, Rigel Kivi, Thorsten Warneke, Tae-Young Goo, and Yao Té
Atmos. Meas. Tech., 11, 3111–3130, https://doi.org/10.5194/amt-11-3111-2018, https://doi.org/10.5194/amt-11-3111-2018, 2018
Youwen Sun, Mathias Palm, Cheng Liu, Frank Hase, David Griffith, Christine Weinzierl, Christof Petri, Wei Wang, and Justus Notholt
Atmos. Meas. Tech., 11, 2879–2896, https://doi.org/10.5194/amt-11-2879-2018, https://doi.org/10.5194/amt-11-2879-2018, 2018
Short summary
Short summary
We simulated instrumental line shape (ILS) degradations with respect to typical types of misalignment, and compared their influence on each NDACC gas. The requirements to suppress the ILS-degradation-related biases within a specified accuracy for all NDACC gases were deduced.
Peter Bergamaschi, Ute Karstens, Alistair J. Manning, Marielle Saunois, Aki Tsuruta, Antoine Berchet, Alexander T. Vermeulen, Tim Arnold, Greet Janssens-Maenhout, Samuel Hammer, Ingeborg Levin, Martina Schmidt, Michel Ramonet, Morgan Lopez, Jost Lavric, Tuula Aalto, Huilin Chen, Dietrich G. Feist, Christoph Gerbig, László Haszpra, Ove Hermansen, Giovanni Manca, John Moncrieff, Frank Meinhardt, Jaroslaw Necki, Michal Galkowski, Simon O'Doherty, Nina Paramonova, Hubertus A. Scheeren, Martin Steinbacher, and Ed Dlugokencky
Atmos. Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, https://doi.org/10.5194/acp-18-901-2018, 2018
Short summary
Short summary
European methane (CH4) emissions are estimated for 2006–2012 using atmospheric in situ measurements from 18 European monitoring stations and 7 different inverse models. Our analysis highlights the potential significant contribution of natural emissions from wetlands (including peatlands and wet soils) to the total European emissions. The top-down estimates of total EU-28 CH4 emissions are broadly consistent with the sum of reported anthropogenic CH4 emissions and the estimated natural emissions.
Yana A. Virolainen, Yury M. Timofeyev, Vladimir S. Kostsov, Dmitry V. Ionov, Vladislav V. Kalinnikov, Maria V. Makarova, Anatoly V. Poberovsky, Nikita A. Zaitsev, Hamud H. Imhasin, Alexander V. Polyakov, Matthias Schneider, Frank Hase, Sabine Barthlott, and Thomas Blumenstock
Atmos. Meas. Tech., 10, 4521–4536, https://doi.org/10.5194/amt-10-4521-2017, https://doi.org/10.5194/amt-10-4521-2017, 2017
Short summary
Short summary
Water vapour is one of the most important gases in the Earth’s atmosphere and plays a unique role in climate and weather forming. Cross-comparison of different systems for monitoring the atmospheric integrated water vapour (IWV) measurements is an essential part of their testing and validation protocol. We compare coincident measurements of IWV by different techniques over Saint Petersburg (Russia), assess their quality in various atmospheric conditions, and give recommendation for data users.
Kevin S. Olsen, Kimberly Strong, Kaley A. Walker, Chris D. Boone, Piera Raspollini, Johannes Plieninger, Whitney Bader, Stephanie Conway, Michel Grutter, James W. Hannigan, Frank Hase, Nicholas Jones, Martine de Mazière, Justus Notholt, Matthias Schneider, Dan Smale, Ralf Sussmann, and Naoko Saitoh
Atmos. Meas. Tech., 10, 3697–3718, https://doi.org/10.5194/amt-10-3697-2017, https://doi.org/10.5194/amt-10-3697-2017, 2017
Short summary
Short summary
The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier transform spectrometer (FTS). TANSO-FTS has a thermal infrared channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios in the troposphere. We compare the retrieved vertical profiles of CH4 from TANSO-FTS with those from two other spaceborne FTSs and with ground-based FTS observatories to assess their quality.
Eddy F. Plaza-Medina, Wolfgang Stremme, Alejandro Bezanilla, Michel Grutter, Matthias Schneider, Frank Hase, and Thomas Blumenstock
Atmos. Meas. Tech., 10, 2703–2725, https://doi.org/10.5194/amt-10-2703-2017, https://doi.org/10.5194/amt-10-2703-2017, 2017
Short summary
Short summary
We present data and error estimations of O3 profiles retrieved from spectra measured by a medium- and a high-resolution FTIR spectrometer (located at 2260 m and 3985 m a.s.l.). Above the tropopause both data sets agree well and in accordance with the estimated errors. We introduce a product that combines the two FTIR retrieval results, and a comparison to Mexico City in situ data indicates that the combined product is able to capture the highly varying boundary layer O3 concentrations.
Jorge L. Baylon, Wolfgang Stremme, Michel Grutter, Frank Hase, and Thomas Blumenstock
Atmos. Meas. Tech., 10, 2425–2434, https://doi.org/10.5194/amt-10-2425-2017, https://doi.org/10.5194/amt-10-2425-2017, 2017
Short summary
Short summary
In this investigation we analyze two common optical configurations to retrieve CO2 total column amounts from solar absorption infrared spectra. The noise errors using either a KBr or CaF2 beam splitter, a main component of a Fourier transform infrared spectrometer, are quantified in order to assess the relative precisions of the measurements. A 3-year XCO2 time series at the high-altitude site of Altzomoni in central Mexico presents clear annual and diurnal cycles and a trend of +2.2 ppm yr-1.
Debra Wunch, Paul O. Wennberg, Gregory Osterman, Brendan Fisher, Bret Naylor, Coleen M. Roehl, Christopher O'Dell, Lukas Mandrake, Camille Viatte, Matthäus Kiel, David W. T. Griffith, Nicholas M. Deutscher, Voltaire A. Velazco, Justus Notholt, Thorsten Warneke, Christof Petri, Martine De Maziere, Mahesh K. Sha, Ralf Sussmann, Markus Rettinger, David Pollard, John Robinson, Isamu Morino, Osamu Uchino, Frank Hase, Thomas Blumenstock, Dietrich G. Feist, Sabrina G. Arnold, Kimberly Strong, Joseph Mendonca, Rigel Kivi, Pauli Heikkinen, Laura Iraci, James Podolske, Patrick W. Hillyard, Shuji Kawakami, Manvendra K. Dubey, Harrison A. Parker, Eliezer Sepulveda, Omaira E. García, Yao Te, Pascal Jeseck, Michael R. Gunson, David Crisp, and Annmarie Eldering
Atmos. Meas. Tech., 10, 2209–2238, https://doi.org/10.5194/amt-10-2209-2017, https://doi.org/10.5194/amt-10-2209-2017, 2017
Short summary
Short summary
This paper describes the comparisons between NASA's Orbiting Carbon Observatory (OCO-2) column-averaged dry-air mole fractions of CO2 with its primary ground-based validation network, the Total Carbon Column Observing Network (TCCON). The paper shows that while the standard bias correction reduces much of the spurious variability in the satellite measurements, residual biases remain.
Rebecca R. Buchholz, Merritt N. Deeter, Helen M. Worden, John Gille, David P. Edwards, James W. Hannigan, Nicholas B. Jones, Clare Paton-Walsh, David W. T. Griffith, Dan Smale, John Robinson, Kimberly Strong, Stephanie Conway, Ralf Sussmann, Frank Hase, Thomas Blumenstock, Emmanuel Mahieu, and Bavo Langerock
Atmos. Meas. Tech., 10, 1927–1956, https://doi.org/10.5194/amt-10-1927-2017, https://doi.org/10.5194/amt-10-1927-2017, 2017
Short summary
Short summary
The study presents the first systematic use of ground-based remote-sensing data from the Network for the Detection of Atmospheric Composition Change (NDACC) to validate satellite-based Measurements of Pollution in the Troposphere (MOPITT) total column carbon monoxide (CO). MOPITT generally shows low bias with respect to the ground-based instruments. The geographic and temporal dependence of validation results are determined. Our findings inform some recommendations for using MOPITT measurements.
Liang Feng, Paul I. Palmer, Hartmut Bösch, Robert J. Parker, Alex J. Webb, Caio S. C. Correia, Nicholas M. Deutscher, Lucas G. Domingues, Dietrich G. Feist, Luciana V. Gatti, Emanuel Gloor, Frank Hase, Rigel Kivi, Yi Liu, John B. Miller, Isamu Morino, Ralf Sussmann, Kimberly Strong, Osamu Uchino, Jing Wang, and Andreas Zahn
Atmos. Chem. Phys., 17, 4781–4797, https://doi.org/10.5194/acp-17-4781-2017, https://doi.org/10.5194/acp-17-4781-2017, 2017
Short summary
Short summary
We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4:XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. Our results show that assimilation of GOSAT data significantly reduced the posterior uncertainty and changed the a priori spatial distribution of CH4 emissions.
Aki Tsuruta, Tuula Aalto, Leif Backman, Janne Hakkarainen, Ingrid T. van der Laan-Luijkx, Maarten C. Krol, Renato Spahni, Sander Houweling, Marko Laine, Ed Dlugokencky, Angel J. Gomez-Pelaez, Marcel van der Schoot, Ray Langenfelds, Raymond Ellul, Jgor Arduini, Francesco Apadula, Christoph Gerbig, Dietrich G. Feist, Rigel Kivi, Yukio Yoshida, and Wouter Peters
Geosci. Model Dev., 10, 1261–1289, https://doi.org/10.5194/gmd-10-1261-2017, https://doi.org/10.5194/gmd-10-1261-2017, 2017
Short summary
Short summary
In this study, we found that the average global methane emission for 2000–2012, estimated by the CTE-CH4 model, was 516±51 Tg CH4 yr-1, and the estimates for 2007–2012 were 4 % larger than for 2000–2006. The model estimates are sensitive to inputs and setups, but according to sensitivity tests the study suggests that the increase in atmospheric methane concentrations during 21st century was due to an increase in emissions from the 35S-EQ latitudinal bands.
Whitney Bader, Benoît Bovy, Stephanie Conway, Kimberly Strong, Dan Smale, Alexander J. Turner, Thomas Blumenstock, Chris Boone, Martine Collaud Coen, Ancelin Coulon, Omaira Garcia, David W. T. Griffith, Frank Hase, Petra Hausmann, Nicholas Jones, Paul Krummel, Isao Murata, Isamu Morino, Hideaki Nakajima, Simon O'Doherty, Clare Paton-Walsh, John Robinson, Rodrigue Sandrin, Matthias Schneider, Christian Servais, Ralf Sussmann, and Emmanuel Mahieu
Atmos. Chem. Phys., 17, 2255–2277, https://doi.org/10.5194/acp-17-2255-2017, https://doi.org/10.5194/acp-17-2255-2017, 2017
Short summary
Short summary
An increase of 0.31 ± 0.03 % year−1 of atmospheric methane is reported using 10 years of solar observations performed at 10 ground-based stations since 2005. These trend agree with a GEOS-Chem-tagged simulation that accounts for the contribution of each emission source and one sink in the total methane. The GEOS-Chem simulation shows that anthropogenic emissions from coal mining and gas and oil transport and exploration have played a major role in the increase methane since 2005.
Matthias Schneider, Christian Borger, Andreas Wiegele, Frank Hase, Omaira E. García, Eliezer Sepúlveda, and Martin Werner
Atmos. Meas. Tech., 10, 507–525, https://doi.org/10.5194/amt-10-507-2017, https://doi.org/10.5194/amt-10-507-2017, 2017
Short summary
Short summary
The characteristics of {H2O,δD} pair space-based remote sensing data depend on the atmospheric and surface conditions, which compromises their usage for model evaluation studies. This paper shows how the problem can be overcome by simulating MUSICA MetOp/IASI {H2O,δD} remote sensing products for any given model atmosphere. The remote sensing retrieval simulator is freely provided as a MATLAB and Python routine.
Natalie Kille, Sunil Baidar, Philip Handley, Ivan Ortega, Roman Sinreich, Owen R. Cooper, Frank Hase, James W. Hannigan, Gabriele Pfister, and Rainer Volkamer
Atmos. Meas. Tech., 10, 373–392, https://doi.org/10.5194/amt-10-373-2017, https://doi.org/10.5194/amt-10-373-2017, 2017
Short summary
Short summary
This article describes a new instrument for measuring and quantifying emission fluxes. It introduces the instrument using the solar occultation flux method. Results are presented from the FRAPPE field campaign near Denver, Colorado, from 2014. Calculations of emissions of sources are presented from FRAPPE and compared to emission inventories. Finally, structure functions are calculated to facilitate the future comparison of high-resolution measurements with low resolution satellite measurements.
Sabine Barthlott, Matthias Schneider, Frank Hase, Thomas Blumenstock, Matthäus Kiel, Darko Dubravica, Omaira E. García, Eliezer Sepúlveda, Gizaw Mengistu Tsidu, Samuel Takele Kenea, Michel Grutter, Eddy F. Plaza-Medina, Wolfgang Stremme, Kim Strong, Dan Weaver, Mathias Palm, Thorsten Warneke, Justus Notholt, Emmanuel Mahieu, Christian Servais, Nicholas Jones, David W. T. Griffith, Dan Smale, and John Robinson
Earth Syst. Sci. Data, 9, 15–29, https://doi.org/10.5194/essd-9-15-2017, https://doi.org/10.5194/essd-9-15-2017, 2017
Short summary
Short summary
Tropospheric water vapour isotopologue distributions have been consistently generated and quality-filtered for 12 globally distributed ground-based FTIR sites. The products are provided as two data types. The first type is best-suited for tropospheric water vapour distribution studies. The second type is needed for analysing moisture pathways by means of {H2O,δD}-pair distributions. This paper describes the data types and gives recommendations for their correct usage.
Dmitry A. Belikov, Shamil Maksyutov, Alexander Ganshin, Ruslan Zhuravlev, Nicholas M. Deutscher, Debra Wunch, Dietrich G. Feist, Isamu Morino, Robert J. Parker, Kimberly Strong, Yukio Yoshida, Andrey Bril, Sergey Oshchepkov, Hartmut Boesch, Manvendra K. Dubey, David Griffith, Will Hewson, Rigel Kivi, Joseph Mendonca, Justus Notholt, Matthias Schneider, Ralf Sussmann, Voltaire A. Velazco, and Shuji Aoki
Atmos. Chem. Phys., 17, 143–157, https://doi.org/10.5194/acp-17-143-2017, https://doi.org/10.5194/acp-17-143-2017, 2017
André Butz, Anna Solvejg Dinger, Nicole Bobrowski, Julian Kostinek, Lukas Fieber, Constanze Fischerkeller, Giovanni Bruno Giuffrida, Frank Hase, Friedrich Klappenbach, Jonas Kuhn, Peter Lübcke, Lukas Tirpitz, and Qiansi Tu
Atmos. Meas. Tech., 10, 1–14, https://doi.org/10.5194/amt-10-1-2017, https://doi.org/10.5194/amt-10-1-2017, 2017
Short summary
Short summary
Remote sensing of the gaseous composition of non-eruptive, passively degassing volcanic plumes can be a tool for volcano monitoring. Here, we report on a field study that demonstrates the feasibility of remotely measuring the volcanic enhancements of carbon dioxide, hydrogen fluoride, hydrogen chloride, sulfur dioxide, and bromine monoxide in the plume of Mt. Etna using portable spectroscopic instrumentation sampling the plume several kilometers downwind of the source.
Katherine M. Saad, Debra Wunch, Nicholas M. Deutscher, David W. T. Griffith, Frank Hase, Martine De Mazière, Justus Notholt, David F. Pollard, Coleen M. Roehl, Matthias Schneider, Ralf Sussmann, Thorsten Warneke, and Paul O. Wennberg
Atmos. Chem. Phys., 16, 14003–14024, https://doi.org/10.5194/acp-16-14003-2016, https://doi.org/10.5194/acp-16-14003-2016, 2016
Short summary
Short summary
Current approaches to constrain the global methane budget assimilate total column measurements into models, but model biases can impact results. We use tropospheric methane columns to evaluate model transport errors and identify a seasonal time lag in the Northern Hemisphere troposphere masked by stratospheric compensating effects. We find systematic biases in the stratosphere will alias into model-derived emissions estimates, especially those in the high Northern latitudes that vary seasonally.
Andreas Ostler, Ralf Sussmann, Prabir K. Patra, Sander Houweling, Marko De Bruine, Gabriele P. Stiller, Florian J. Haenel, Johannes Plieninger, Philippe Bousquet, Yi Yin, Marielle Saunois, Kaley A. Walker, Nicholas M. Deutscher, David W. T. Griffith, Thomas Blumenstock, Frank Hase, Thorsten Warneke, Zhiting Wang, Rigel Kivi, and John Robinson
Atmos. Meas. Tech., 9, 4843–4859, https://doi.org/10.5194/amt-9-4843-2016, https://doi.org/10.5194/amt-9-4843-2016, 2016
Short summary
Short summary
Our evaluation of column-averaged methane (XCH4) in models and TCCON reveals latitudinal biases between 0.4 % and 2.1 % originating from an inter-model spread in stratospheric CH4. Substituting model stratospheric CH4 fields by satellite data significantly reduces the large XCH4 bias observed for one model. For other models, showing only minor biases, the impact is ambiguous; i.e., the satellite uncertainty range hinders a more accurate model evaluation needed to improve inverse modeling.
Gaétane Ronsmans, Bavo Langerock, Catherine Wespes, James W. Hannigan, Frank Hase, Tobias Kerzenmacher, Emmanuel Mahieu, Matthias Schneider, Dan Smale, Daniel Hurtmans, Martine De Mazière, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Meas. Tech., 9, 4783–4801, https://doi.org/10.5194/amt-9-4783-2016, https://doi.org/10.5194/amt-9-4783-2016, 2016
Short summary
Short summary
HNO3 concentrations are obtained from the IASI instrument and the data set is characterized for the first time in terms of vertical profiles, averaging kernels and error profiles. A validation is also conducted through a comparison with ground-based FTIR measurements, with good results. The data set is then used to analyse HNO3 spatial and temporal variability for the year 2011. The latitudinal gradient and the large seasonal variability in polar regions are well represented with IASI data.
Cristina Robles-Gonzalez, Mónica Navarro-Comas, Olga Puentedura, Matthias Schneider, Frank Hase, Omaira Garcia, Thomas Blumenstock, and Manuel Gil-Ojeda
Atmos. Meas. Tech., 9, 4471–4485, https://doi.org/10.5194/amt-9-4471-2016, https://doi.org/10.5194/amt-9-4471-2016, 2016
Short summary
Short summary
The comparison of observations performed by different techniques and satellite instruments is important. An intercomparison of the stratospheric NO2 derived from ground-based and satellite instruments has been carried out over the Izaña subtropical site. The importance of the use of the effective solar zenith angle when comparing noon measurements with twilight measurements of photochemically active species is highlighted. All instruments show positive trends in NO2 stratospheric column.
Makoto Inoue, Isamu Morino, Osamu Uchino, Takahiro Nakatsuru, Yukio Yoshida, Tatsuya Yokota, Debra Wunch, Paul O. Wennberg, Coleen M. Roehl, David W. T. Griffith, Voltaire A. Velazco, Nicholas M. Deutscher, Thorsten Warneke, Justus Notholt, John Robinson, Vanessa Sherlock, Frank Hase, Thomas Blumenstock, Markus Rettinger, Ralf Sussmann, Esko Kyrö, Rigel Kivi, Kei Shiomi, Shuji Kawakami, Martine De Mazière, Sabrina G. Arnold, Dietrich G. Feist, Erica A. Barrow, James Barney, Manvendra Dubey, Matthias Schneider, Laura T. Iraci, James R. Podolske, Patrick W. Hillyard, Toshinobu Machida, Yousuke Sawa, Kazuhiro Tsuboi, Hidekazu Matsueda, Colm Sweeney, Pieter P. Tans, Arlyn E. Andrews, Sebastien C. Biraud, Yukio Fukuyama, Jasna V. Pittman, Eric A. Kort, and Tomoaki Tanaka
Atmos. Meas. Tech., 9, 3491–3512, https://doi.org/10.5194/amt-9-3491-2016, https://doi.org/10.5194/amt-9-3491-2016, 2016
Short summary
Short summary
In this study, we correct the biases of GOSAT XCO2 and XCH4 using TCCON data. To evaluate the effectiveness of our correction method, uncorrected/corrected GOSAT data are compared to independent XCO2 and XCH4 data derived from aircraft measurements. Consequently, we suggest that this method is effective for reducing the biases of the GOSAT data. We consider that our work provides GOSAT data users with valuable information and contributes to the further development of studies on greenhouse gases.
Matthias Schneider, Andreas Wiegele, Sabine Barthlott, Yenny González, Emanuel Christner, Christoph Dyroff, Omaira E. García, Frank Hase, Thomas Blumenstock, Eliezer Sepúlveda, Gizaw Mengistu Tsidu, Samuel Takele Kenea, Sergio Rodríguez, and Javier Andrey
Atmos. Meas. Tech., 9, 2845–2875, https://doi.org/10.5194/amt-9-2845-2016, https://doi.org/10.5194/amt-9-2845-2016, 2016
Short summary
Short summary
Tropospheric {H2O,δD} pairs can be observed by remote sensing techniques, but the data quality strongly depends on a comprehensive consideration of the complex nature and a careful calibration of the remote sensing data pairs. This paper reviews the quality assurance/documentation activities of the MUSICA project and demonstrates that MUSICA’s ground-based FTIR and space-based IASI {H2O,δD} pair products are accurate and can be generated at a global scale with high resolution and for long periods.
Omaira Elena García, Eliezer Sepúlveda, Matthias Schneider, Frank Hase, Thomas August, Thomas Blumenstock, Sven Kühl, Rosemary Munro, Ángel Jesús Gómez-Peláez, Tim Hultberg, Alberto Redondas, Sabine Barthlott, Andreas Wiegele, Yenny González, and Esther Sanromá
Atmos. Meas. Tech., 9, 2315–2333, https://doi.org/10.5194/amt-9-2315-2016, https://doi.org/10.5194/amt-9-2315-2016, 2016
Short summary
Short summary
Atmospheric remote sounding from space is fundamental for investigating the processes driving climate change. However, for a correct scientific interpretation of these records a documentation of their quality is required. In this context, this paper exploits the high potential of the Izaña Atmospheric Observatory, as a ground-based reference site, to perform the first comprehensive validation of the EUMETSAT atmospheric trace gas products O3, CH4, N2O, CO and CO2 of the remote sensor IASI.
Frank Hase, Matthias Frey, Matthäus Kiel, Thomas Blumenstock, Roland Harig, Axel Keens, and Johannes Orphal
Atmos. Meas. Tech., 9, 2303–2313, https://doi.org/10.5194/amt-9-2303-2016, https://doi.org/10.5194/amt-9-2303-2016, 2016
Short summary
Short summary
We describe an extension of a portable FTIR (Fourier transform infrafed) spectrometer dedicated to the measurement of column-averaged abundances of greenhouse gases in the atmosphere. The measurement principle is based on a spectrally resolved solar absorption observation (trace gas amounts are deduced from the strength of near-infrared absorption bands). The dual-channel set-up presented here allows co-observing CO while maintaining the highly favourable characteristics of the original device.
Matthäus Kiel, Frank Hase, Thomas Blumenstock, and Oliver Kirner
Atmos. Meas. Tech., 9, 2223–2239, https://doi.org/10.5194/amt-9-2223-2016, https://doi.org/10.5194/amt-9-2223-2016, 2016
Minqiang Zhou, Bart Dils, Pucai Wang, Rob Detmers, Yukio Yoshida, Christopher W. O'Dell, Dietrich G. Feist, Voltaire Almario Velazco, Matthias Schneider, and Martine De Mazière
Atmos. Meas. Tech., 9, 1415–1430, https://doi.org/10.5194/amt-9-1415-2016, https://doi.org/10.5194/amt-9-1415-2016, 2016
Short summary
Short summary
The sun-glint XCO2 and XCH4 products (“ocean data”) of thermal and near infrared sensor for carbon observations Fourier transform spectrometer (TANSO-FTS) on board the Greenhouse Gases Observing Satellite (GOSAT) from several retrieval algorithms is compared with the FTIR measurements form near-ocean Total Carbon Column Observing Network (TCCON) sites, and the results indicate that the ocean data show a good agreement with TCCON measurements.
Susan Kulawik, Debra Wunch, Christopher O'Dell, Christian Frankenberg, Maximilian Reuter, Tomohiro Oda, Frederic Chevallier, Vanessa Sherlock, Michael Buchwitz, Greg Osterman, Charles E. Miller, Paul O. Wennberg, David Griffith, Isamu Morino, Manvendra K. Dubey, Nicholas M. Deutscher, Justus Notholt, Frank Hase, Thorsten Warneke, Ralf Sussmann, John Robinson, Kimberly Strong, Matthias Schneider, Martine De Mazière, Kei Shiomi, Dietrich G. Feist, Laura T. Iraci, and Joyce Wolf
Atmos. Meas. Tech., 9, 683–709, https://doi.org/10.5194/amt-9-683-2016, https://doi.org/10.5194/amt-9-683-2016, 2016
Short summary
Short summary
To accurately estimate source and sink locations of carbon dioxide, systematic errors in satellite measurements and models must be characterized. This paper examines two satellite data sets (GOSAT, launched 2009, and SCIAMACHY, launched 2002), and two models (CarbonTracker and MACC) vs. the TCCON CO2 validation data set. We assess biases and errors by season and latitude, satellite performance under averaging, and diurnal variability. Our findings are useful for assimilation of satellite data.
M. Kiel, D. Wunch, P. O. Wennberg, G. C. Toon, F. Hase, and T. Blumenstock
Atmos. Meas. Tech., 9, 669–682, https://doi.org/10.5194/amt-9-669-2016, https://doi.org/10.5194/amt-9-669-2016, 2016
Sébastien Massart, Anna Agustí-Panareda, Jens Heymann, Michael Buchwitz, Frédéric Chevallier, Maximilian Reuter, Michael Hilker, John P. Burrows, Nicholas M. Deutscher, Dietrich G. Feist, Frank Hase, Ralf Sussmann, Filip Desmet, Manvendra K. Dubey, David W. T. Griffith, Rigel Kivi, Christof Petri, Matthias Schneider, and Voltaire A. Velazco
Atmos. Chem. Phys., 16, 1653–1671, https://doi.org/10.5194/acp-16-1653-2016, https://doi.org/10.5194/acp-16-1653-2016, 2016
Short summary
Short summary
This study presents the European Centre for Medium-Range Weather Forecasts (ECMWF) monitoring of atmospheric CO2 using measurements from the Greenhouse gases Observing Satellite (GOSAT). We show that the modelled CO2 has a better precision than standard CO2 satellite products compared to ground-based measurements. We also present the CO2 forecast based on our best knowledge of the atmospheric CO2 distribution. We show that it has skill to forecast the largest scale CO2 patterns up to day 5.
L. Feng, P. I. Palmer, R. J. Parker, N. M. Deutscher, D. G. Feist, R. Kivi, I. Morino, and R. Sussmann
Atmos. Chem. Phys., 16, 1289–1302, https://doi.org/10.5194/acp-16-1289-2016, https://doi.org/10.5194/acp-16-1289-2016, 2016
Short summary
Short summary
There is an on-going debate on the larger European biospheric uptake inferred from GOSAT XCO2 retrievals than those inferred from in situ data. Using a set of 15 experiments, we found that the elevated uptake over Europe could largely be explained by mis-fitting data due to regional XCO2 biases: 50–80 % of the elevated European uptake is due to retrievals outside the immediate European; and a varying monthly bias of up to 0.5 ppm for XCO2 retrievals over Europe could explain most of the remainder.
F. Klappenbach, M. Bertleff, J. Kostinek, F. Hase, T. Blumenstock, A. Agusti-Panareda, M. Razinger, and A. Butz
Atmos. Meas. Tech., 8, 5023–5038, https://doi.org/10.5194/amt-8-5023-2015, https://doi.org/10.5194/amt-8-5023-2015, 2015
Short summary
Short summary
Measurements of atmospheric carbon dioxide and methane total vertical column abundance from onboard the research vessel "RV Polarstern" in March / April 2014. Along the journey on the Atlantic from Cape Town (South Africa) to Bremerhaven (Germany) we could reproduce the interhemispheric gradient of the target gases, and we compared the measurements with satellite and model data. Future campaigns could use the new mobility to characterize sources and sinks of carbon-dioxide and methane.
H. Lindqvist, C. W. O'Dell, S. Basu, H. Boesch, F. Chevallier, N. Deutscher, L. Feng, B. Fisher, F. Hase, M. Inoue, R. Kivi, I. Morino, P. I. Palmer, R. Parker, M. Schneider, R. Sussmann, and Y. Yoshida
Atmos. Chem. Phys., 15, 13023–13040, https://doi.org/10.5194/acp-15-13023-2015, https://doi.org/10.5194/acp-15-13023-2015, 2015
Short summary
Short summary
Atmospheric carbon dioxide concentration varies seasonally mainly due to plant photosynthesis in the Northern Hemisphere. We found that the satellite GOSAT can capture this variability from space to within 1ppm. We also found that models can differ by more than 1ppm. This implies that the satellite measurements could be useful in evaluating models and their prior estimates of carbon dioxide sources and sinks.
R. J. Parker, H. Boesch, K. Byckling, A. J. Webb, P. I. Palmer, L. Feng, P. Bergamaschi, F. Chevallier, J. Notholt, N. Deutscher, T. Warneke, F. Hase, R. Sussmann, S. Kawakami, R. Kivi, D. W. T. Griffith, and V. Velazco
Atmos. Meas. Tech., 8, 4785–4801, https://doi.org/10.5194/amt-8-4785-2015, https://doi.org/10.5194/amt-8-4785-2015, 2015
Short summary
Short summary
Atmospheric CH4 is an important greenhouse gas. Long-term global observations are necessary to understand its behaviour, with satellite observations playing a key role. The "proxy" retrieval method is one of the most successful but relies on the contribution from atmospheric CO2 models. This work assesses the significance of the uncertainty from the model CO2 within the retrieval and determines that despite this uncertainty the data are still valuable for determining sources and sinks of CH4.
G. Biavati, D. G. Feist, C. Gerbig, and R. Kretschmer
Atmos. Meas. Tech., 8, 4215–4230, https://doi.org/10.5194/amt-8-4215-2015, https://doi.org/10.5194/amt-8-4215-2015, 2015
Short summary
Short summary
The goal of this work is to present a method that can be used to estimate the uncertainty for a singular estimate for the mixing height. It is defined here as the localization error. The method is based on the actual signal (radiosonde) and its measurement errors, ant it does not consider the physics causing the signal.
It can be applied to all kind of signals and algorithm when standard error propagation cannot be used to asses the uncertainty of a location of a localized property.
V. Duflot, C. Wespes, L. Clarisse, D. Hurtmans, Y. Ngadi, N. Jones, C. Paton-Walsh, J. Hadji-Lazaro, C. Vigouroux, M. De Mazière, J.-M. Metzger, E. Mahieu, C. Servais, F. Hase, M. Schneider, C. Clerbaux, and P.-F. Coheur
Atmos. Chem. Phys., 15, 10509–10527, https://doi.org/10.5194/acp-15-10509-2015, https://doi.org/10.5194/acp-15-10509-2015, 2015
Short summary
Short summary
We present global distributions of acetylene (C2H2) and hydrogen cyanide (HCN) total
columns derived from the Infrared Atmospheric Sounding Interferometer (IASI). C2H2 and HCN are ubiquitous atmospheric trace gases with medium tropospheric lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. We show that there is an overall agreement between ground-based and space measurements, as well as model simulations.
R. Checa-Garcia, J. Landgraf, A. Galli, F. Hase, V. A. Velazco, H. Tran, V. Boudon, F. Alkemade, and A. Butz
Atmos. Meas. Tech., 8, 3617–3629, https://doi.org/10.5194/amt-8-3617-2015, https://doi.org/10.5194/amt-8-3617-2015, 2015
Short summary
Short summary
The future satellite missions Sentinel-5 and its precursor will monitor methane column average dry air mole fractions. The ambitious accuracy required on regional scales demands a characterization of the systematic error sources in which spectroscopic uncertainties are crucial. This study investigates how methane and water vapour spectroscopic errors propagate into retrieval errors, showing that spectroscopy-induced errors exceed 0.6% in large parts of the
world and are regionally correlated.
G. Mengistu Tsidu, T. Blumenstock, and F. Hase
Atmos. Meas. Tech., 8, 3277–3295, https://doi.org/10.5194/amt-8-3277-2015, https://doi.org/10.5194/amt-8-3277-2015, 2015
Short summary
Short summary
Intercomparison of precipitable water vapour from ERA-Interim, Fourier transform infrared spectrometer, GPS and radiosonde over complex topography of Ethiopia was made for the first time over a data-void region of eastern Africa. The study reveals weakness of ERA-Interim reanalysis in capturing diurnal and to some extent seasonal variabilities. The weakness can be improved through additional data assimilation, adaptation of convection and land surface modules to the reality in the region.
F. Hase, M. Frey, T. Blumenstock, J. Groß, M. Kiel, R. Kohlhepp, G. Mengistu Tsidu, K. Schäfer, M. K. Sha, and J. Orphal
Atmos. Meas. Tech., 8, 3059–3068, https://doi.org/10.5194/amt-8-3059-2015, https://doi.org/10.5194/amt-8-3059-2015, 2015
M. Frey, F. Hase, T. Blumenstock, J. Groß, M. Kiel, G. Mengistu Tsidu, K. Schäfer, M. K. Sha, and J. Orphal
Atmos. Meas. Tech., 8, 3047–3057, https://doi.org/10.5194/amt-8-3047-2015, https://doi.org/10.5194/amt-8-3047-2015, 2015
A. Ostler, R. Sussmann, P. K. Patra, P. O. Wennberg, N. M. Deutscher, D. W. T. Griffith, T. Blumenstock, F. Hase, R. Kivi, T. Warneke, Z. Wang, M. De Mazière, J. Robinson, and H. Ohyama
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-20395-2015, https://doi.org/10.5194/acpd-15-20395-2015, 2015
Preprint withdrawn
Short summary
Short summary
We find that stratospheric model-transport errors are common for chemical transport models that are used for inverse estimates of CH4 emissions. These model-transport errors cause latitudinal as well as seasonal biases in simulated stratospheric and, hence, column-averaged CH4 mixing ratios (XCH4). Such a model bias corresponds to an overestimation of arctic and mid-latitude CH4 emissions if inversion studies do not apply an ad hoc bias correction before inverting fluxes from XCH4 observations.
J. Heymann, M. Reuter, M. Hilker, M. Buchwitz, O. Schneising, H. Bovensmann, J. P. Burrows, A. Kuze, H. Suto, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, S. Kawakami, R. Kivi, I. Morino, C. Petri, C. Roehl, M. Schneider, V. Sherlock, R. Sussmann, V. A. Velazco, T. Warneke, and D. Wunch
Atmos. Meas. Tech., 8, 2961–2980, https://doi.org/10.5194/amt-8-2961-2015, https://doi.org/10.5194/amt-8-2961-2015, 2015
Short summary
Short summary
Long-term data sets of global atmospheric carbon dioxide concentrations based on observations from different satellite instruments may suffer from inconsistencies originating from the use of different retrieval algorithms. This issue has been addressed by applying the Bremen Optimal Estimation DOAS retrieval algorithm to SCIAMACHY and TANSO-FTS observations. Detailed comparisons with TCCON and CarbonTracker show good consistency between the SCIAMACHY and TANSO-FTS data sets.
A. J. Turner, D. J. Jacob, K. J. Wecht, J. D. Maasakkers, E. Lundgren, A. E. Andrews, S. C. Biraud, H. Boesch, K. W. Bowman, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, A. Kuze, J. Notholt, H. Ohyama, R. Parker, V. H. Payne, R. Sussmann, C. Sweeney, V. A. Velazco, T. Warneke, P. O. Wennberg, and D. Wunch
Atmos. Chem. Phys., 15, 7049–7069, https://doi.org/10.5194/acp-15-7049-2015, https://doi.org/10.5194/acp-15-7049-2015, 2015
R. A. Scheepmaker, C. Frankenberg, N. M. Deutscher, M. Schneider, S. Barthlott, T. Blumenstock, O. E. Garcia, F. Hase, N. Jones, E. Mahieu, J. Notholt, V. Velazco, J. Landgraf, and I. Aben
Atmos. Meas. Tech., 8, 1799–1818, https://doi.org/10.5194/amt-8-1799-2015, https://doi.org/10.5194/amt-8-1799-2015, 2015
C. Piesch, C. Sartorius, F. Friedl-Vallon, T. Gulde, S. Heger, E. Kretschmer, G. Maucher, H. Nordmeyer, J. Barthel, A. Ebersoldt, F. Graf, F. Hase, A. Kleinert, T. Neubert, and H. J. Schillings
Atmos. Meas. Tech., 8, 1773–1787, https://doi.org/10.5194/amt-8-1773-2015, https://doi.org/10.5194/amt-8-1773-2015, 2015
Short summary
Short summary
The paper shows the design and the technics of the GLORIA spectrometer, the dedicated cooling system, and the performance during operation on HALO aircraft.
S. Barthlott, M. Schneider, F. Hase, A. Wiegele, E. Christner, Y. González, T. Blumenstock, S. Dohe, O. E. García, E. Sepúlveda, K. Strong, J. Mendonca, D. Weaver, M. Palm, N. M. Deutscher, T. Warneke, J. Notholt, B. Lejeune, E. Mahieu, N. Jones, D. W. T. Griffith, V. A. Velazco, D. Smale, J. Robinson, R. Kivi, P. Heikkinen, and U. Raffalski
Atmos. Meas. Tech., 8, 1555–1573, https://doi.org/10.5194/amt-8-1555-2015, https://doi.org/10.5194/amt-8-1555-2015, 2015
J.-L. Lacour, L. Clarisse, J. Worden, M. Schneider, S. Barthlott, F. Hase, C. Risi, C. Clerbaux, D. Hurtmans, and P.-F. Coheur
Atmos. Meas. Tech., 8, 1447–1466, https://doi.org/10.5194/amt-8-1447-2015, https://doi.org/10.5194/amt-8-1447-2015, 2015
Short summary
Short summary
This paper describes a cross-validation study of tropospheric δD (HDO/H2O ratio) profiles retrieved from IASI spectra (retrieval performed at ULB). We document how these profiles compare to profiles derived from TES/AURA sounder and from three ground-based FTIRs of the NDACC network (produced within the MUSICA project). We show that empirical differences are in agreement with the theoretical expected differences which are dominated by IASI observational and the smoothing error components.
C. Vigouroux, T. Blumenstock, M. Coffey, Q. Errera, O. García, N. B. Jones, J. W. Hannigan, F. Hase, B. Liley, E. Mahieu, J. Mellqvist, J. Notholt, M. Palm, G. Persson, M. Schneider, C. Servais, D. Smale, L. Thölix, and M. De Mazière
Atmos. Chem. Phys., 15, 2915–2933, https://doi.org/10.5194/acp-15-2915-2015, https://doi.org/10.5194/acp-15-2915-2015, 2015
M. Schneider, Y. González, C. Dyroff, E. Christner, A. Wiegele, S. Barthlott, O. E. García, E. Sepúlveda, F. Hase, J. Andrey, T. Blumenstock, C. Guirado, R. Ramos, and S. Rodríguez
Atmos. Meas. Tech., 8, 483–503, https://doi.org/10.5194/amt-8-483-2015, https://doi.org/10.5194/amt-8-483-2015, 2015
M. Reuter, M. Buchwitz, M. Hilker, J. Heymann, O. Schneising, D. Pillai, H. Bovensmann, J. P. Burrows, H. Bösch, R. Parker, A. Butz, O. Hasekamp, C. W. O'Dell, Y. Yoshida, C. Gerbig, T. Nehrkorn, N. M. Deutscher, T. Warneke, J. Notholt, F. Hase, R. Kivi, R. Sussmann, T. Machida, H. Matsueda, and Y. Sawa
Atmos. Chem. Phys., 14, 13739–13753, https://doi.org/10.5194/acp-14-13739-2014, https://doi.org/10.5194/acp-14-13739-2014, 2014
Short summary
Short summary
Current knowledge about the European terrestrial biospheric carbon sink relies upon bottom-up and global surface flux inverse model estimates using in situ measurements. Our analysis of five satellite data sets comprises a regional inversion designed to be insensitive to potential retrieval biases and transport errors. We show that the satellite-derived sink is larger (1.0±0.3GtC/a) than previous estimates (0.4±0.4GtC/a).
A. Ostler, R. Sussmann, M. Rettinger, N. M. Deutscher, S. Dohe, F. Hase, N. Jones, M. Palm, and B.-M. Sinnhuber
Atmos. Meas. Tech., 7, 4081–4101, https://doi.org/10.5194/amt-7-4081-2014, https://doi.org/10.5194/amt-7-4081-2014, 2014
Short summary
Short summary
Ground-based FTIR soundings of column-average methane from NDACC and TCCON can be combined without the need to apply an overall calibration factor. NDACC and TCCON measurements complement one another and provide valuable information for satellite validation, evaluation of chemical-transport models, and source-sink inversions. The impact of dynamical variability on NDACC and TCCON retrievals of column-average methane is reflected in different smoothing effects.
H. Diémoz, A. M. Siani, A. Redondas, V. Savastiouk, C. T. McElroy, M. Navarro-Comas, and F. Hase
Atmos. Meas. Tech., 7, 4009–4022, https://doi.org/10.5194/amt-7-4009-2014, https://doi.org/10.5194/amt-7-4009-2014, 2014
Short summary
Short summary
- A new algorithm to retrieve nitrogen dioxide by Brewer spectrophotometers was developed.
- Direct sun and zenith sky data recorded at the Izaña observatory were processed with the new algorithm and compared to co-located reference instruments.
- The measurement uncertainty was thoroughly determined by using a Monte Carlo technique.
- The new algorithm can be applied to more than 60 Brewers around the world.
F. Friedl-Vallon, T. Gulde, F. Hase, A. Kleinert, T. Kulessa, G. Maucher, T. Neubert, F. Olschewski, C. Piesch, P. Preusse, H. Rongen, C. Sartorius, H. Schneider, A. Schönfeld, V. Tan, N. Bayer, J. Blank, R. Dapp, A. Ebersoldt, H. Fischer, F. Graf, T. Guggenmoser, M. Höpfner, M. Kaufmann, E. Kretschmer, T. Latzko, H. Nordmeyer, H. Oelhaf, J. Orphal, M. Riese, G. Schardt, J. Schillings, M. K. Sha, O. Suminska-Ebersoldt, and J. Ungermann
Atmos. Meas. Tech., 7, 3565–3577, https://doi.org/10.5194/amt-7-3565-2014, https://doi.org/10.5194/amt-7-3565-2014, 2014
O. E. García, M. Schneider, F. Hase, T. Blumenstock, E. Sepúlveda, and Y. González
Atmos. Meas. Tech., 7, 3071–3084, https://doi.org/10.5194/amt-7-3071-2014, https://doi.org/10.5194/amt-7-3071-2014, 2014
A. Wiegele, M. Schneider, F. Hase, S. Barthlott, O. E. García, E. Sepúlveda, Y. González, T. Blumenstock, U. Raffalski, M. Gisi, and R. Kohlhepp
Atmos. Meas. Tech., 7, 2719–2732, https://doi.org/10.5194/amt-7-2719-2014, https://doi.org/10.5194/amt-7-2719-2014, 2014
E. Sepúlveda, M. Schneider, F. Hase, S. Barthlott, D. Dubravica, O. E. García, A. Gomez-Pelaez, Y. González, J. C. Guerra, M. Gisi, R. Kohlhepp, S. Dohe, T. Blumenstock, K. Strong, D. Weaver, M. Palm, A. Sadeghi, N. M. Deutscher, T. Warneke, J. Notholt, N. Jones, D. W. T. Griffith, D. Smale, G. W. Brailsford, J. Robinson, F. Meinhardt, M. Steinbacher, T. Aalto, and D. Worthy
Atmos. Meas. Tech., 7, 2337–2360, https://doi.org/10.5194/amt-7-2337-2014, https://doi.org/10.5194/amt-7-2337-2014, 2014
B. Dils, M. Buchwitz, M. Reuter, O. Schneising, H. Boesch, R. Parker, S. Guerlet, I. Aben, T. Blumenstock, J. P. Burrows, A. Butz, N. M. Deutscher, C. Frankenberg, F. Hase, O. P. Hasekamp, J. Heymann, M. De Mazière, J. Notholt, R. Sussmann, T. Warneke, D. Griffith, V. Sherlock, and D. Wunch
Atmos. Meas. Tech., 7, 1723–1744, https://doi.org/10.5194/amt-7-1723-2014, https://doi.org/10.5194/amt-7-1723-2014, 2014
F. Deng, D. B. A. Jones, D. K. Henze, N. Bousserez, K. W. Bowman, J. B. Fisher, R. Nassar, C. O'Dell, D. Wunch, P. O. Wennberg, E. A. Kort, S. C. Wofsy, T. Blumenstock, N. M. Deutscher, D. W. T. Griffith, F. Hase, P. Heikkinen, V. Sherlock, K. Strong, R. Sussmann, and T. Warneke
Atmos. Chem. Phys., 14, 3703–3727, https://doi.org/10.5194/acp-14-3703-2014, https://doi.org/10.5194/acp-14-3703-2014, 2014
F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl
Atmos. Meas. Tech., 6, 3527–3537, https://doi.org/10.5194/amt-6-3527-2013, https://doi.org/10.5194/amt-6-3527-2013, 2013
S. Dohe, V. Sherlock, F. Hase, M. Gisi, J. Robinson, E. Sepúlveda, M. Schneider, and T. Blumenstock
Atmos. Meas. Tech., 6, 1981–1992, https://doi.org/10.5194/amt-6-1981-2013, https://doi.org/10.5194/amt-6-1981-2013, 2013
G. Wetzel, H. Oelhaf, G. Berthet, A. Bracher, C. Cornacchia, D. G. Feist, H. Fischer, A. Fix, M. Iarlori, A. Kleinert, A. Lengel, M. Milz, L. Mona, S. C. Müller, J. Ovarlez, G. Pappalardo, C. Piccolo, P. Raspollini, J.-B. Renard, V. Rizi, S. Rohs, C. Schiller, G. Stiller, M. Weber, and G. Zhang
Atmos. Chem. Phys., 13, 5791–5811, https://doi.org/10.5194/acp-13-5791-2013, https://doi.org/10.5194/acp-13-5791-2013, 2013
S. Takele Kenea, G. Mengistu Tsidu, T. Blumenstock, F. Hase, T. von Clarmann, and G. P. Stiller
Atmos. Meas. Tech., 6, 495–509, https://doi.org/10.5194/amt-6-495-2013, https://doi.org/10.5194/amt-6-495-2013, 2013
M. Schneider, S. Barthlott, F. Hase, Y. González, K. Yoshimura, O. E. García, E. Sepúlveda, A. Gomez-Pelaez, M. Gisi, R. Kohlhepp, S. Dohe, T. Blumenstock, A. Wiegele, E. Christner, K. Strong, D. Weaver, M. Palm, N. M. Deutscher, T. Warneke, J. Notholt, B. Lejeune, P. Demoulin, N. Jones, D. W. T. Griffith, D. Smale, and J. Robinson
Atmos. Meas. Tech., 5, 3007–3027, https://doi.org/10.5194/amt-5-3007-2012, https://doi.org/10.5194/amt-5-3007-2012, 2012
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Instruments and Platforms
Design study for an airborne N2O lidar
The Pyrenean Platform for Observation of the Atmosphere: site, long-term dataset, and science
The Small Mobile Ozone Lidar (SMOL): instrument description and first results
Study of NO2 and HCHO vertical profile measurement based on Fast Synchronous MAX-DOAS
A novel, balloon-borne UV–Vis spectrometer for direct sun measurements of stratospheric bromine
Tropospheric Ozone sensing with a differential absorption lidar based on single CO2 Raman cell
Stability requirements of satellites to detect long-term stratospheric ozone trends based upon Monte Carlo simulations
Martian column CO2 and pressure measurement with spaceborne differential absorption lidar at 1.96 µm
Offshore methane detection and quantification from space using sun glint measurements with the GHGSat constellation
Novel use of an adapted ultraviolet double monochromator for measurements of global and direct irradiance, ozone, and aerosol
Geostationary Environment Monitoring Spectrometer (GEMS) polarization characteristics and correction algorithm
An open-path observatory for greenhouse gases based on near-infrared Fourier transform spectroscopy
Ground-to-UAV, laser-based emissions quantification of methane and acetylene at long standoff distances
A portable reflected-sunlight spectrometer for CO2 and CH4
Open-path measurement of stable water isotopologues using mid-infrared dual-comb spectroscopy
Total column ozone retrieval from a novel array spectroradiometer
Applying machine learning to improve the near-real-time products of the Aura Microwave Limb Sounder
The site-specific primary calibration conditions for the Brewer spectrophotometer
Precipitable water vapor retrievals using a ground-based infrared sky camera in subtropical South America
Theoretical assessment of the ability of the MicroCarb satellite city-scan observing mode to estimate urban CO2 emissions
UAV-based sampling systems to analyse greenhouse gases and volatile organic compounds encompassing compound-specific stable isotope analysis
Performance and polarization response of slit homogenizers for the GeoCarb mission
Exploring bias in the OCO-3 snapshot area mapping mode via geometry, surface, and aerosol effects
Updated spectral radiance calibration on TIR bands for TANSO-FTS-2 onboard GOSAT-2
Evaluation of the High Altitude Lidar Observatory (HALO) methane retrievals during the summer 2019 ACT-America campaign
Polarization performance simulation for the GeoXO atmospheric composition instrument: NO2 retrieval impacts
The impact of aerosol fluorescence on long-term water vapor monitoring by Raman lidar and evaluation of a potential correction method
Integrated airborne investigation of the air composition over the Russian sector of the Arctic
Measurement of the vertical atmospheric density profile from the X-ray Earth occultation of the Crab Nebula with Insight-HXMT
Quantification and mitigation of the instrument effects and uncertainties of the airborne limb imaging FTIR GLORIA
Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON)
Ground-based Ku-band microwave observations of ozone in the polar middle atmosphere
Traceable total ozone column retrievals from direct solar spectral irradiance measurements in the ultraviolet
Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite
The NO2 camera based on gas correlation spectroscopy
Total water vapour columns derived from Sentinel 5P using the AMC-DOAS method
Mobile and high-spectral-resolution Fabry–Pérot interferometer spectrographs for atmospheric remote sensing
Diurnal variability of stratospheric column NO2 measured using direct solar and lunar spectra over Table Mountain, California (34.38° N)
The “ideal” spectrograph for atmospheric observations
Differential absorption lidar for water vapor isotopologues in the 1.98 µm spectral region: sensitivity analysis with respect to regional atmospheric variability
Atmospheric carbon dioxide measurement from aircraft and comparison with OCO-2 and CarbonTracker model data
Long-term column-averaged greenhouse gas observations using a COCCON spectrometer at the high-surface-albedo site in Gobabeb, Namibia
A fully automated Dobson sun spectrophotometer for total column ozone and Umkehr measurements
Slit homogenizer introduced performance gain analysis based on the Sentinel-5/UVNS spectrometer
On the capability of the future ALTIUS ultraviolet–visible–near-infrared limb sounder to constrain modelled stratospheric ozone
MicroPulse DIAL (MPD) – a diode-laser-based lidar architecture for quantitative atmospheric profiling
A multi-purpose, multi-rotor drone system for long-range and high-altitude volcanic gas plume measurements
Tropospheric NO2 measurements using a three-wavelength optical parametric oscillator differential absorption lidar
Spectral calibration of the MethaneAIR instrument
The design and development of a tuneable and portable radiation source for in situ spectrometer characterisation
Christoph Kiemle, Andreas Fix, Christian Fruck, Gerhard Ehret, and Martin Wirth
Atmos. Meas. Tech., 17, 6569–6578, https://doi.org/10.5194/amt-17-6569-2024, https://doi.org/10.5194/amt-17-6569-2024, 2024
Short summary
Short summary
Nitrous oxide is the third most important greenhouse gas modified by human activities after carbon dioxide and methane. This study examines the feasibility of airborne differential absorption lidar to quantify emissions from agriculture, fossil fuel combustion, industry, and biomass burning. Simulations show that a technically realizable and affordable mid-infrared lidar system will be able to measure the nitrous oxide column concentration enhancements with sufficient precision.
Marie Lothon, François Gheusi, Fabienne Lohou, Véronique Pont, Serge Soula, Corinne Jambert, Solène Derrien, Yannick Bezombes, Emmanuel Leclerc, Gilles Athier, Antoine Vial, Alban Philibert, Bernard Campistron, Frédérique Saïd, Jeroen Sonke, Julien Amestoy, Erwan Bargain, Pierre Bosser, Damien Boulanger, Guillaume Bret, Renaud Bodichon, Laurent Cabanas, Guylaine Canut, Jean-Bernard Estrampes, Eric Gardrat, Zaida Gomez Kuri, Jérémy Gueffier, Fabienne Guesdon, Morgan Lopez, Olivier Masson, Pierre-Yves Meslin, Yves Meyerfeld, Nicolas Pascal, Eric Pique, Michel Ramonet, Felix Starck, and Romain Vidal
Atmos. Meas. Tech., 17, 6265–6300, https://doi.org/10.5194/amt-17-6265-2024, https://doi.org/10.5194/amt-17-6265-2024, 2024
Short summary
Short summary
The Pyrenean Platform for Observation of the Atmosphere (P2OA) is a coupled plain–mountain instrumented platform in southwestern France for the monitoring of climate variables and the study of meteorological processes in a mountainous region. A comprehensive description of this platform is presented for the first time: its instrumentation, the associated dataset, and a meteorological characterization the site. The potential of the P2OA is illustrated through several examples of process studies.
Fernando Chouza, Thierry Leblanc, Patrick Wang, Steven S. Brown, Kristen Zuraski, Wyndom Chace, Caroline C. Womack, Jeff Peischl, John Hair, Taylor Shingler, and John Sullivan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-154, https://doi.org/10.5194/amt-2024-154, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
The JPL lidar group developed the SMOL (Small Mobile Ozone Lidar), an affordable ozone differential absorption lidar (DIAL) system covering all altitudes from 200 m to 10 km. a.g.l. The comparison with airborne in-situ and lidar measurements shows very good agreement. An additional comparison with nearby surface ozone measuring instruments indicates unbiased measurements by the SMOL lidars down to 200 m above ground level.
Jiangman Xu, Ang Li, Zhaokun Hu, Hairong Zhang, and Min Qin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1695, https://doi.org/10.5194/egusphere-2024-1695, 2024
Short summary
Short summary
This article introduces an experimental system for rapidly acquiring trace gas profiles using multi-channel spectroscopy, significantly enhancing the time resolution of spectral collection. Owing to the improved temporal resolution, the gas profile obtained by the FS MAX-DOAS can show more details than MAX-DOAS. This work can also be integrated with mobile platforms for navigational observation research, which is crucial for achieving mobile MAX-DOAS profile measurements.
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz
Atmos. Meas. Tech., 17, 4507–4528, https://doi.org/10.5194/amt-17-4507-2024, https://doi.org/10.5194/amt-17-4507-2024, 2024
Short summary
Short summary
A novel balloon-borne instrument for direct sun and solar occultation measurements of several UV–Vis absorbing gases (e.g. O3, NO2, BrO, IO, and HONO) is described. Its major design features and performance during two stratospheric deployments are discussed. From the measured overhead BrO concentration and a suitable photochemical correction, total stratospheric bromine is inferred to (17.5 ± 2.2) ppt in air masses which entered the stratosphere around early 2017 ± 1 year.
Guangqiang Fan, Yibin Fu, Juntao Huo, Yan Xiang, Tianshu Zhang, and Wenqing Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1853, https://doi.org/10.5194/egusphere-2024-1853, 2024
Short summary
Short summary
Differential absorption lidar is a instrument for determining the spatial and temporal distribution of the ozone. We present an ozone differential absorption lidar system based on the single CO2 Raman cell and the grating spectrometer to detect ozone in both the planetary boundary layer and the free troposphere simultaneously. Many uncertainties including aerosol interference induced errors, and the system errors caused by wavelength index uncertainty are conducted a more thorough investigation.
Mark Weber
Atmos. Meas. Tech., 17, 3597–3604, https://doi.org/10.5194/amt-17-3597-2024, https://doi.org/10.5194/amt-17-3597-2024, 2024
Short summary
Short summary
We investigate how stable the performance of a satellite instrument has to be to be useful for assessing long-term trends in stratospheric ozone. The stability of an instrument is specified in percent per decade and is also called instrument drift. Instrument drifts add to uncertainties of long-term trends. From simulated time series of ozone based on the Monte Carlo approach, we determine stability requirements that are needed to achieve the desired long-term trend uncertainty.
Zhaoyan Liu, Bing Lin, Joel F. Campbell, Jirong Yu, Jihong Geng, and Shibin Jiang
Atmos. Meas. Tech., 17, 2977–2990, https://doi.org/10.5194/amt-17-2977-2024, https://doi.org/10.5194/amt-17-2977-2024, 2024
Short summary
Short summary
We introduce a concept utilizing a differential absorption barometric lidar operating within the 1.96 µm CO2 absorption band. Our focus is on a compact lidar configuration, featuring reduced telescope size and lower laser pulse energies towards minimizing costs for potential forthcoming Mars missions. The core measurement objectives encompass the determination of column CO2 absorption optical depth and abundance, surface air pressure, and vertical distributions of dust and cloud layers.
Jean-Philippe W. MacLean, Marianne Girard, Dylan Jervis, David Marshall, Jason McKeever, Antoine Ramier, Mathias Strupler, Ewan Tarrant, and David Young
Atmos. Meas. Tech., 17, 863–874, https://doi.org/10.5194/amt-17-863-2024, https://doi.org/10.5194/amt-17-863-2024, 2024
Short summary
Short summary
We demonstrate the capabilities of the GHGSat satellite constellation to detect and quantify offshore methane emissions using a sun glint observation mode. Using this technique, we observe offshore methane emissions from space ranging from 180 kg h−1 to 84 000 kg h−1. We further assess the instrument performance in offshore environments, both empirically and using analytical modelling, and find that the detection limit varies with latitude and season.
Alexander Geddes, Ben Liley, Richard McKenzie, Michael Kotkamp, and Richard Querel
Atmos. Meas. Tech., 17, 827–838, https://doi.org/10.5194/amt-17-827-2024, https://doi.org/10.5194/amt-17-827-2024, 2024
Short summary
Short summary
In this paper we describe a unique spectrometer that has been developed and tested over 10 years at Lauder, New Zealand. The spectrometer in question, UV2, makes alternating measurements of global UV and direct sun UV irradiance. After an assessment of the instrument performance, we compare the ozone and aerosol optical depth derived from UV2 to other independent measurements, finding excellent agreement suggesting that UV2 could supersede these measurements, particularly for ozone.
Haklim Choi, Xiong Liu, Ukkyo Jeong, Heesung Chong, Jhoon Kim, Myung Hwan Ahn, Dai Ho Ko, Dong-Won Lee, Kyung-Jung Moon, and Kwang-Mog Lee
Atmos. Meas. Tech., 17, 145–164, https://doi.org/10.5194/amt-17-145-2024, https://doi.org/10.5194/amt-17-145-2024, 2024
Short summary
Short summary
GEMS is the first geostationary satellite to measure the UV--Vis region, and this paper reports the polarization characteristics of GEMS and an algorithm. We develop a polarization correction algorithm optimized for GEMS based on a look-up-table approach that simultaneously considers the polarization of incoming light and polarization sensitivity characteristics of the instrument. Pre-launch polarization error was adjusted close to zero across the spectral range after polarization correction.
Tobias D. Schmitt, Jonas Kuhn, Ralph Kleinschek, Benedikt A. Löw, Stefan Schmitt, William Cranton, Martina Schmidt, Sanam N. Vardag, Frank Hase, David W. T. Griffith, and André Butz
Atmos. Meas. Tech., 16, 6097–6110, https://doi.org/10.5194/amt-16-6097-2023, https://doi.org/10.5194/amt-16-6097-2023, 2023
Short summary
Short summary
Our new observatory measures greenhouse gas concentrations of carbon dioxide (CO2) and methane (CH4) along a 1.55 km long light path over the city of Heidelberg, Germany. We compared our measurements with measurements that were taken at a single point at one end of our path. The two mostly agreed but show a significant difference for CO2 with certain wind directions. This is important when using greenhouse gas concentration measurements to observe greenhouse gas emissions of cities.
Kevin C. Cossel, Eleanor M. Waxman, Eli Hoenig, Daniel Hesselius, Christopher Chaote, Ian Coddington, and Nathan R. Newbury
Atmos. Meas. Tech., 16, 5697–5707, https://doi.org/10.5194/amt-16-5697-2023, https://doi.org/10.5194/amt-16-5697-2023, 2023
Short summary
Short summary
Measurements of the emission rate of a gas or gases from point and area sources are important in a range of monitoring applications. We demonstrate a method for rapid quantification of the emission rate of multiple gases using a spatially scannable open-path sensor. The open-path spectrometer measures the total column density of gases between the spectrometer and a retroreflector mounted on an uncrewed aerial vehicle (UAV). By scanning the UAV altitude, we can determine the total gas emissions.
Benedikt A. Löw, Ralph Kleinschek, Vincent Enders, Stanley P. Sander, Thomas J. Pongetti, Tobias D. Schmitt, Frank Hase, Julian Kostinek, and André Butz
Atmos. Meas. Tech., 16, 5125–5144, https://doi.org/10.5194/amt-16-5125-2023, https://doi.org/10.5194/amt-16-5125-2023, 2023
Short summary
Short summary
We developed a portable spectrometer (EM27/SCA) that remotely measures greenhouse gases in the lower atmosphere above a target region. The measurements can deliver insights into local emission patterns. To evaluate its performance, we set up the EM27/SCA above the Los Angeles Basin side by side with a similar non-portable instrument (CLARS-FTS). The precision is promising and the measurements are consistent with CLARS-FTS. In the future, we need to account for light scattering.
Daniel I. Herman, Griffin Mead, Fabrizio R. Giorgetta, Esther Baumann, Nathan A. Malarich, Brian R. Washburn, Nathan R. Newbury, Ian Coddington, and Kevin C. Cossel
Atmos. Meas. Tech., 16, 4053–4066, https://doi.org/10.5194/amt-16-4053-2023, https://doi.org/10.5194/amt-16-4053-2023, 2023
Short summary
Short summary
Measurements of the isotope ratio of water vapor provide information about the sources and history of water vapor at a given location, which can be used to understand the impacts of climate change on global water use. Here, we demonstrate a new method for measuring isotope ratios over long open-air paths, which can reduce sampling bias and provide more spatial averaging than standard point sensor methods. We show that this new technique has high sensitivity and accuracy.
Luca Egli, Julian Gröbner, Herbert Schill, and Eliane Maillard Barras
Atmos. Meas. Tech., 16, 2889–2902, https://doi.org/10.5194/amt-16-2889-2023, https://doi.org/10.5194/amt-16-2889-2023, 2023
Short summary
Short summary
This paper introduces a new method to retrieve total column ozone with spectral ground-based measurements from a novel array spectroradiometer. Total column ozone estimates using the small, cost-effective, and robust instrument and the new retrieval method are compared with other co-located total column ozone instruments. The comparison shows that the new system performs similarly to other well-established instruments, which require substantially more maintenance than the system introduced here.
Frank Werner, Nathaniel J. Livesey, Luis F. Millán, William G. Read, Michael J. Schwartz, Paul A. Wagner, William H. Daffer, Alyn Lambert, Sasha N. Tolstoff, and Michelle L. Santee
Atmos. Meas. Tech., 16, 2733–2751, https://doi.org/10.5194/amt-16-2733-2023, https://doi.org/10.5194/amt-16-2733-2023, 2023
Short summary
Short summary
The algorithm that produces the near-real-time data products of the Aura Microwave Limb Sounder has been updated. The new algorithm is based on machine learning techniques and yields data products with much improved accuracy. It is shown that the new algorithm outperforms the previous versions, even when it is trained on only a few years of satellite observations. This confirms the potential of applying machine learning to the near-real-time efforts of other current and future mission concepts.
Xiaoyi Zhao, Vitali Fioletov, Alberto Redondas, Julian Gröbner, Luca Egli, Franz Zeilinger, Javier López-Solano, Alberto Berjón Arroyo, James Kerr, Eliane Maillard Barras, Herman Smit, Michael Brohart, Reno Sit, Akira Ogyu, Ihab Abboud, and Sum Chi Lee
Atmos. Meas. Tech., 16, 2273–2295, https://doi.org/10.5194/amt-16-2273-2023, https://doi.org/10.5194/amt-16-2273-2023, 2023
Short summary
Short summary
The Brewer ozone spectrophotometer is one of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW)'s standard ozone monitoring instruments since the 1980s. This work is aimed at obtaining answers to (1) why Brewer primary calibration work can only be performed at certain sites (e.g., Izaña and MLO) and (2) what is needed to assure the equivalence of calibration quality from different sites.
Elion Daniel Hack, Theotonio Pauliquevis, Henrique Melo Jorge Barbosa, Marcia Akemi Yamasoe, Dimitri Klebe, and Alexandre Lima Correia
Atmos. Meas. Tech., 16, 1263–1278, https://doi.org/10.5194/amt-16-1263-2023, https://doi.org/10.5194/amt-16-1263-2023, 2023
Short summary
Short summary
Water vapor is a key factor when seeking to understand fast-changing processes when clouds and storms form and develop. We show here how images from a calibrated infrared camera can be used to derive how much water vapor there is in the atmosphere at a given time. Comparing our results to an established technique, for a case of stable atmospheric conditions, we found an agreement within 2.8 %. Water vapor sky maps can be retrieved every few minutes, day or night, under partly cloudy skies.
Kai Wu, Paul I. Palmer, Dien Wu, Denis Jouglet, Liang Feng, and Tom Oda
Atmos. Meas. Tech., 16, 581–602, https://doi.org/10.5194/amt-16-581-2023, https://doi.org/10.5194/amt-16-581-2023, 2023
Short summary
Short summary
We evaluate the theoretical ability of the upcoming MicroCarb satellite to estimate urban CO2 emissions over Paris and London. We explore the relative performance of alternative two-sweep and three-sweep city observing modes and take into account the impacts of cloud cover and urban biological CO2 fluxes. Our results find both the two-sweep and three-sweep observing modes are able to reduce prior flux errors by 20 %–40 % depending on the prevailing wind direction and cloud coverage.
Simon Leitner, Wendelin Feichtinger, Stefan Mayer, Florian Mayer, Dustin Krompetz, Rebecca Hood-Nowotny, and Andrea Watzinger
Atmos. Meas. Tech., 16, 513–527, https://doi.org/10.5194/amt-16-513-2023, https://doi.org/10.5194/amt-16-513-2023, 2023
Short summary
Short summary
An increased social environmental awareness requires the monitoring of greenhouse gases (GHGs). We report on the development of two sampling devices (which can be mounted to a drone) and the subsequent measurement setup to analyse these gases. The functionality of the presented system was tested in the field, and the results emphasised the functionality of the sampling and measurement setup, demonstrating that it is a viable tool for monitoring GHGs and identifying their emission sources.
Sean Crowell, Tobias Haist, Michael Tscherpel, Jérôme Caron, Eric Burgh, and Berrien Moore III
Atmos. Meas. Tech., 16, 195–208, https://doi.org/10.5194/amt-16-195-2023, https://doi.org/10.5194/amt-16-195-2023, 2023
Short summary
Short summary
Variations in brightness in radiance measurements cause errors that can be mitigated with hardware that scrambles the pattern of the incoming light. GeoCarb took this route to minimize this source of errors, but lab testing determined that the solution chosen was too sensitive to the the polarization of the incoming light. Modeling found that this was a predictable result of using gold coatings in the design, which is typical of spaceflight optical instruments.
Emily Bell, Christopher W. O'Dell, Thomas E. Taylor, Aronne Merrelli, Robert R. Nelson, Matthäus Kiel, Annmarie Eldering, Robert Rosenberg, and Brendan Fisher
Atmos. Meas. Tech., 16, 109–133, https://doi.org/10.5194/amt-16-109-2023, https://doi.org/10.5194/amt-16-109-2023, 2023
Short summary
Short summary
A small percentage of data from the Orbiting Carbon Observatory-3 (OCO-3) instrument has been shown to have a geometry-related bias in the earliest public data release. This work shows that the bias is due to a complex interplay of aerosols and viewing geometry and is largely mitigated in the latest data version through improved bias correction and quality filtering.
Hiroshi Suto, Fumie Kataoka, Robert O. Knuteson, Kei Shiomi, Nobuhiro Kikuchi, and Akihiko Kuze
Atmos. Meas. Tech., 15, 5399–5413, https://doi.org/10.5194/amt-15-5399-2022, https://doi.org/10.5194/amt-15-5399-2022, 2022
Short summary
Short summary
TANSO-FTS-2 onboard GOSAT-2 has operated nominally since February 2019, and the atmospheric radiance spectra it has acquired have been released to the public. This paper describes an updated model for spectral radiance calibration of TIR and its validation. The multi-satellite sensor and multi-angle comparison results suggest that the spectral radiance for TANSO-FTS-2 TIR, version v210210, is superior to that of the previous version in its consistency of multi-satellite sensor data.
Rory A. Barton-Grimley, Amin R. Nehrir, Susan A. Kooi, James E. Collins, David B. Harper, Anthony Notari, Joseph Lee, Joshua P. DiGangi, Yonghoon Choi, and Kenneth J. Davis
Atmos. Meas. Tech., 15, 4623–4650, https://doi.org/10.5194/amt-15-4623-2022, https://doi.org/10.5194/amt-15-4623-2022, 2022
Short summary
Short summary
HALO is a multi-functional lidar that measures CH4 columns and profiles of H2O mixing ratio and aerosol/cloud optical properties. HALO supports carbon cycle, weather dynamics, and radiation science suborbital research and is a technology testbed for future space-based differential absorption lidar missions. In 2019 HALO collected CH4 columns and aerosol/cloud profiles during the ACT-America campaign. Here we assess HALO's CH4 accuracy and precision compared to co-located in situ observations.
Aaron Pearlman, Monica Cook, Boryana Efremova, Francis Padula, Lok Lamsal, Joel McCorkel, and Joanna Joiner
Atmos. Meas. Tech., 15, 4489–4501, https://doi.org/10.5194/amt-15-4489-2022, https://doi.org/10.5194/amt-15-4489-2022, 2022
Short summary
Short summary
NOAA’s Geostationary Extended Observations (GeoXO) constellation is planned to consist of an atmospheric composition instrument (ACX) to support air quality forecasting and monitoring. As design trade-offs are being studied, we investigated one parameter, the polarization sensitivity, which has yet to be fully documented for NO2 retrievals. Our simulation study explores these impacts to inform the ACX’s development and better understand polarization’s role in trace gas retrievals.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Giovanni Martucci, Alexander Haefele, Hélène Vérèmes, Valentin Duflot, Guillaume Payen, and Philippe Keckhut
Atmos. Meas. Tech., 15, 4241–4256, https://doi.org/10.5194/amt-15-4241-2022, https://doi.org/10.5194/amt-15-4241-2022, 2022
Short summary
Short summary
The comparison of water vapor lidar measurements with co-located radiosondes and aerosol backscatter profiles indicates that laser-induced aerosol fluorescence in smoke layers injected into the stratosphere can introduce very large and chronic wet biases above 15 km, thus impacting the ability of these systems to accurately estimate long-term water vapor trends. The proposed correction method presented in this work is able to reduce this fluorescence-induced bias from 75 % to under 5 %.
Boris D. Belan, Gerard Ancellet, Irina S. Andreeva, Pavel N. Antokhin, Viktoria G. Arshinova, Mikhail Y. Arshinov, Yurii S. Balin, Vladimir E. Barsuk, Sergei B. Belan, Dmitry G. Chernov, Denis K. Davydov, Alexander V. Fofonov, Georgii A. Ivlev, Sergei N. Kotel'nikov, Alexander S. Kozlov, Artem V. Kozlov, Katharine Law, Andrey V. Mikhal'chishin, Igor A. Moseikin, Sergei V. Nasonov, Philippe Nédélec, Olesya V. Okhlopkova, Sergei E. Ol'kin, Mikhail V. Panchenko, Jean-Daniel Paris, Iogannes E. Penner, Igor V. Ptashnik, Tatyana M. Rasskazchikova, Irina K. Reznikova, Oleg A. Romanovskii, Alexander S. Safatov, Denis E. Savkin, Denis V. Simonenkov, Tatyana K. Sklyadneva, Gennadii N. Tolmachev, Semyon V. Yakovlev, and Polina N. Zenkova
Atmos. Meas. Tech., 15, 3941–3967, https://doi.org/10.5194/amt-15-3941-2022, https://doi.org/10.5194/amt-15-3941-2022, 2022
Short summary
Short summary
The change of the global climate is most pronounced in the Arctic, where the air temperature increases faster than the global average. This is associated with an increase in the concentration of greenhouse gases in the atmosphere. It is important to study how the air composition in the Arctic changes in the changing climate. Thus this integrated experiment was carried out to measure the composition of the troposphere in the Russian sector of the Arctic from on board the aircraft laboratory.
Daochun Yu, Haitao Li, Baoquan Li, Mingyu Ge, Youli Tuo, Xiaobo Li, Wangchen Xue, Yaning Liu, Aoying Wang, Yajun Zhu, and Bingxian Luo
Atmos. Meas. Tech., 15, 3141–3159, https://doi.org/10.5194/amt-15-3141-2022, https://doi.org/10.5194/amt-15-3141-2022, 2022
Short summary
Short summary
In this work, the measurement of vertical atmospheric density profiles using X-ray Earth occultation is investigated. The Earth’s density profile for the lower thermosphere is obtained with Insight-HXMT. It is shown that the Insight-HXMT X-ray satellite of China can be used as an X-ray atmospheric diagnostics instrument for the upper atmosphere. The Insight-HXMT satellite can, with other X-ray astronomical satellites in orbit, form a network for X-ray Earth occultation sounding in the future.
Jörn Ungermann, Anne Kleinert, Guido Maucher, Irene Bartolomé, Felix Friedl-Vallon, Sören Johansson, Lukas Krasauskas, and Tom Neubert
Atmos. Meas. Tech., 15, 2503–2530, https://doi.org/10.5194/amt-15-2503-2022, https://doi.org/10.5194/amt-15-2503-2022, 2022
Short summary
Short summary
GLORIA is a 2-D infrared imaging spectrometer operated on two high-flying research aircraft. This paper details our instrument calibration and characterization efforts, which in particular leverage in-flight data almost exclusively and often exploit the novel 2-D nature of the measurements. We show that the instrument surpasses the original instrument specifications and conclude by analyzing how the derived errors affect temperature and ozone retrievals, two of our main derived quantities.
Carlos Alberti, Frank Hase, Matthias Frey, Darko Dubravica, Thomas Blumenstock, Angelika Dehn, Paolo Castracane, Gregor Surawicz, Roland Harig, Bianca C. Baier, Caroline Bès, Jianrong Bi, Hartmut Boesch, André Butz, Zhaonan Cai, Jia Chen, Sean M. Crowell, Nicholas M. Deutscher, Dragos Ene, Jonathan E. Franklin, Omaira García, David Griffith, Bruno Grouiez, Michel Grutter, Abdelhamid Hamdouni, Sander Houweling, Neil Humpage, Nicole Jacobs, Sujong Jeong, Lilian Joly, Nicholas B. Jones, Denis Jouglet, Rigel Kivi, Ralph Kleinschek, Morgan Lopez, Diogo J. Medeiros, Isamu Morino, Nasrin Mostafavipak, Astrid Müller, Hirofumi Ohyama, Paul I. Palmer, Mahesh Pathakoti, David F. Pollard, Uwe Raffalski, Michel Ramonet, Robbie Ramsay, Mahesh Kumar Sha, Kei Shiomi, William Simpson, Wolfgang Stremme, Youwen Sun, Hiroshi Tanimoto, Yao Té, Gizaw Mengistu Tsidu, Voltaire A. Velazco, Felix Vogel, Masataka Watanabe, Chong Wei, Debra Wunch, Marcia Yamasoe, Lu Zhang, and Johannes Orphal
Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022, https://doi.org/10.5194/amt-15-2433-2022, 2022
Short summary
Short summary
Space-borne greenhouse gas missions require ground-based validation networks capable of providing fiducial reference measurements. Here, considerable refinements of the calibration procedures for the COllaborative Carbon Column Observing Network (COCCON) are presented. Laboratory and solar side-by-side procedures for the characterization of the spectrometers have been refined and extended. Revised calibration factors for XCO2, XCO and XCH4 are provided, incorporating 47 new spectrometers.
David A. Newnham, Mark A. Clilverd, William D. J. Clark, Michael Kosch, Pekka T. Verronen, and Alan E. E. Rogers
Atmos. Meas. Tech., 15, 2361–2376, https://doi.org/10.5194/amt-15-2361-2022, https://doi.org/10.5194/amt-15-2361-2022, 2022
Short summary
Short summary
Ozone (O3) is an important trace gas in the mesosphere and lower thermosphere (MLT), affecting heating rates and chemistry. O3 profiles measured by the Ny-Ålesund Ozone in the Mesosphere Instrument agree with Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) for winter night-time, but autumn twilight SABER abundances are up to 50 % higher. O3 abundances in the MLT from two different SABER channels also show significant differences for both autumn twilight and summer daytime.
Luca Egli, Julian Gröbner, Gregor Hülsen, Herbert Schill, and René Stübi
Atmos. Meas. Tech., 15, 1917–1930, https://doi.org/10.5194/amt-15-1917-2022, https://doi.org/10.5194/amt-15-1917-2022, 2022
Short summary
Short summary
This study presents traceable total column ozone retrievals from direct solar spectral irradiance measurements. The retrieved ozone does not require any field calibration with a reference instrument as it is required for other operational network instruments such as Brewer or Dobson. Total column ozone can be retrieved with a traceable overall standard uncertainty of less than 0.8 % indicating a benchmark uncertainty for total column ozone measurements.
Yungang Wang, Liping Fu, Fang Jiang, Xiuqing Hu, Chengbao Liu, Xiaoxin Zhang, Jiawei Li, Zhipeng Ren, Fei He, Lingfeng Sun, Ling Sun, Zhongdong Yang, Peng Zhang, Jingsong Wang, and Tian Mao
Atmos. Meas. Tech., 15, 1577–1586, https://doi.org/10.5194/amt-15-1577-2022, https://doi.org/10.5194/amt-15-1577-2022, 2022
Short summary
Short summary
Far-ultraviolet (FUV) airglow radiation is particularly well suited for space-based remote sensing. The Ionospheric Photometer (IPM) instrument carried aboard the Feng Yun 3-D satellite measures the spectral radiance of the Earth FUV airglow. IPM is a tiny, highly sensitive, and robust remote sensing instrument. Initial results demonstrate that the performance of IPM meets the designed requirement and therefore can be used to study the thermosphere and ionosphere in the future.
Leon Kuhn, Jonas Kuhn, Thomas Wagner, and Ulrich Platt
Atmos. Meas. Tech., 15, 1395–1414, https://doi.org/10.5194/amt-15-1395-2022, https://doi.org/10.5194/amt-15-1395-2022, 2022
Short summary
Short summary
We present a novel instrument for imaging measurements of NO2 with high spatiotemporal resolution based on gas correlation spectroscopy, called the GCS NO2 camera. The instrument works by placing two gas cells (cuvettes) in front of two photosensor arrays, one filled with air and one filled with a high concentration of NO2, acting as a non-dispersive spectral filter. NO2 images are then generated on the basis of the signal ratio of the two channels in the spectral region of 430–445 nm.
Tobias Küchler, Stefan Noël, Heinrich Bovensmann, John Philip Burrows, Thomas Wagner, Christian Borger, Tobias Borsdorff, and Andreas Schneider
Atmos. Meas. Tech., 15, 297–320, https://doi.org/10.5194/amt-15-297-2022, https://doi.org/10.5194/amt-15-297-2022, 2022
Short summary
Short summary
We applied the air-mass-corrected differential optical absorption spectroscopy (AMC-DOAS) method to derive total column water vapour (TCWV) from Sentinel-5P measurements and compared it to independent data sets. The correlation coefficients of typically more than 0.9 and the small deviations up to 2.5 kg m−2 reveal good agreement between our data product and other TCWV data sets. In particular for the different Sentinel-5P water vapour products, the deviations are around 1 kg m−2.
Jonas Kuhn, Nicole Bobrowski, Thomas Wagner, and Ulrich Platt
Atmos. Meas. Tech., 14, 7873–7892, https://doi.org/10.5194/amt-14-7873-2021, https://doi.org/10.5194/amt-14-7873-2021, 2021
Short summary
Short summary
We propose spectrograph implementations using Fabry–Pérot interferometers for atmospheric trace gas remote sensing. Compared with widely used grating spectrographs, we find substantial light throughput and mobility advantages for high resolving powers. Besides lowering detection limits and increasing the spatial and temporal resolution of many atmospheric trace gas measurements, this approach might enable remote sensing of further important gases such as tropospheric OH radicals.
King-Fai Li, Ryan Khoury, Thomas J. Pongetti, Stanley P. Sander, Franklin P. Mills, and Yuk L. Yung
Atmos. Meas. Tech., 14, 7495–7510, https://doi.org/10.5194/amt-14-7495-2021, https://doi.org/10.5194/amt-14-7495-2021, 2021
Short summary
Short summary
Nitrogen dioxide (NO2) plays a dominant role in the stratospheric ozone-destroying catalytic cycle. We have retrieved the diurnal cycle of NO2 over Table Mountain in Southern California, USA, during a week in October 2018. Under clean conditions, we are able to predict the diurnal cycle using standard photochemistry. On a day with significant pollution, we see the effect of NO2 sources in the nearby Los Angeles Basin.
Ulrich Platt, Thomas Wagner, Jonas Kuhn, and Thomas Leisner
Atmos. Meas. Tech., 14, 6867–6883, https://doi.org/10.5194/amt-14-6867-2021, https://doi.org/10.5194/amt-14-6867-2021, 2021
Short summary
Short summary
Absorption spectroscopy of scattered sunlight is extremely useful for the analysis of atmospheric trace gas distributions. A central parameter for the achievable sensitivity of spectroscopic instruments is the light throughput, which can be enhanced in a number of ways. We present new ideas and considerations of how instruments could be optimized. Particular emphasis is on arrays of massively parallel instruments. Such arrays can reduce the size and weight of instruments by orders of magnitude.
Jonas Hamperl, Clément Capitaine, Jean-Baptiste Dherbecourt, Myriam Raybaut, Patrick Chazette, Julien Totems, Bruno Grouiez, Laurence Régalia, Rosa Santagata, Corinne Evesque, Jean-Michel Melkonian, Antoine Godard, Andrew Seidl, Harald Sodemann, and Cyrille Flamant
Atmos. Meas. Tech., 14, 6675–6693, https://doi.org/10.5194/amt-14-6675-2021, https://doi.org/10.5194/amt-14-6675-2021, 2021
Short summary
Short summary
Laser active remote sensing of tropospheric water vapor is a promising technology for enhancing our understanding of processes governing the global hydrological cycle. We investigate the potential of a ground-based lidar to monitor the main water vapor isotopes at high spatio-temporal resolutions in the lower troposphere. Using a realistic end-to-end simulator, we show that high-precision measurements can be achieved within a range of 1.5 km, in mid-latitude or tropical environments.
Qin Wang, Farhan Mustafa, Lingbing Bu, Shouzheng Zhu, Jiqiao Liu, and Weibiao Chen
Atmos. Meas. Tech., 14, 6601–6617, https://doi.org/10.5194/amt-14-6601-2021, https://doi.org/10.5194/amt-14-6601-2021, 2021
Short summary
Short summary
In this work, an airborne experiment was carried out to validate a newly developed CO2 monitoring IPDA lidar against the in situ measurements obtained from a commercial CO2 monitoring instrument installed on an aircraft. The XCO2 values calculated with the IPDA lidar measurements were compared with the dry-air CO2 mole fraction measurements obtained from the in situ instruments, and the results showed a good agreement between the two datasets.
Matthias M. Frey, Frank Hase, Thomas Blumenstock, Darko Dubravica, Jochen Groß, Frank Göttsche, Martin Handjaba, Petrus Amadhila, Roland Mushi, Isamu Morino, Kei Shiomi, Mahesh Kumar Sha, Martine de Mazière, and David F. Pollard
Atmos. Meas. Tech., 14, 5887–5911, https://doi.org/10.5194/amt-14-5887-2021, https://doi.org/10.5194/amt-14-5887-2021, 2021
Short summary
Short summary
In this study, we present measurements of carbon dioxide, methane and carbon monoxide from a recently established site in Gobabeb, Namibia. Gobabeb is the first site observing these gases on the African mainland and improves the global coverage of measurement sites. Gobabeb is a hyperarid desert site, offering unique characteristics. Measurements started 2015 as part of the COllaborative Carbon Column Observing Network. We compare our results with other datasets and find a good agreement.
René Stübi, Herbert Schill, Jörg Klausen, Eliane Maillard Barras, and Alexander Haefele
Atmos. Meas. Tech., 14, 5757–5769, https://doi.org/10.5194/amt-14-5757-2021, https://doi.org/10.5194/amt-14-5757-2021, 2021
Short summary
Short summary
In the first half of the 20th century, Prof. Dobson developed an instrument to measure the ozone column. Around 50 of these Dobson instruments, manufactured in the second half of the 20th century, are still used today to monitor the state of the ozone layer. Started in 1926, the Arosa series was, until recently, based on manually operated Dobsons. To ensure its future operation, a fully automated version of the Dobson has been developed. This well-working automated system is described here.
Timon Hummel, Christian Meister, Corneli Keim, Jasper Krauser, and Mark Wenig
Atmos. Meas. Tech., 14, 5459–5472, https://doi.org/10.5194/amt-14-5459-2021, https://doi.org/10.5194/amt-14-5459-2021, 2021
Short summary
Short summary
The impact of heterogeneous scene radiance affects the quality of trace gas retrieval products of Earth observation imaging spectrometers. This effect can be mitigated by introducing on-board hardware solutions called slit homogenizers, which scramble the light entering the instrument and thereby make it insensitive to Earth scene contrast. Here we present a comprehensive modeling of the slit homogenizer present in the Sentinel-5/UVNS instrument and quantify the spectral performance.
Quentin Errera, Emmanuel Dekemper, Noel Baker, Jonas Debosscher, Philippe Demoulin, Nina Mateshvili, Didier Pieroux, Filip Vanhellemont, and Didier Fussen
Atmos. Meas. Tech., 14, 4737–4753, https://doi.org/10.5194/amt-14-4737-2021, https://doi.org/10.5194/amt-14-4737-2021, 2021
Short summary
Short summary
ALTIUS is a micro-satellite which will measure the distribution of the ozone layer. Micro-satellites are intended to be cost-effective, but does this make the ALTIUS measurements any less valuable? To answer this, we simulated ALTIUS data and measured how it could constrain a model of the ozone layer; we then compared these results with those obtained from the state-of-the-art NASA Aura MLS satellite ozone measurements. The outcome shows us that the ALTIUS
budgetinstrument is indeed valuable.
Scott M. Spuler, Matthew Hayman, Robert A. Stillwell, Joshua Carnes, Todd Bernatsky, and Kevin S. Repasky
Atmos. Meas. Tech., 14, 4593–4616, https://doi.org/10.5194/amt-14-4593-2021, https://doi.org/10.5194/amt-14-4593-2021, 2021
Short summary
Short summary
Continuous water vapor and temperature profiles are critically needed for improved understanding of the lower atmosphere and potential advances in weather forecasting skill. To address this observation need, an active remote sensing technology based on a diode-laser-based lidar architecture is being developed. We discuss the details of the lidar architecture and analyze how it addresses a national-scale profiling network's need to provide continuous thermodynamic observations.
Bo Galle, Santiago Arellano, Nicole Bobrowski, Vladimir Conde, Tobias P. Fischer, Gustav Gerdes, Alexandra Gutmann, Thorsten Hoffmann, Ima Itikarai, Tomas Krejci, Emma J. Liu, Kila Mulina, Scott Nowicki, Tom Richardson, Julian Rüdiger, Kieran Wood, and Jiazhi Xu
Atmos. Meas. Tech., 14, 4255–4277, https://doi.org/10.5194/amt-14-4255-2021, https://doi.org/10.5194/amt-14-4255-2021, 2021
Short summary
Short summary
Measurements of volcanic gases are important for geophysical research, risk assessment and environmental impact studies. Some gases, like SO2 and BrO, may be studied from the ground at a safe distance using remote sensing techniques. Many other gases require in situ access to the gas plume. Here, a drone may be an attractive alternative. This paper describes a drone specially adapted for volcanic gas studies and demonstrates its use in a field campaign at Manam volcano in Papua New Guinea.
Jia Su, M. Patrick McCormick, Matthew S. Johnson, John T. Sullivan, Michael J. Newchurch, Timothy A. Berkoff, Shi Kuang, and Guillaume P. Gronoff
Atmos. Meas. Tech., 14, 4069–4082, https://doi.org/10.5194/amt-14-4069-2021, https://doi.org/10.5194/amt-14-4069-2021, 2021
Short summary
Short summary
A new technique using a three-wavelength differential absorption lidar (DIAL) technique based on an optical parametric oscillator (OPO) laser is proposed to obtain more accurate measurements of NO2. The retrieval uncertainties in aerosol extinction using the three-wavelength DIAL technique are reduced to less than 2 % of those when using the two-wavelength DIAL technique. Hampton University (HU) lidar NO2 profiles are compared with simulated data from the WRF-Chem model, and they agree well.
Carly Staebell, Kang Sun, Jenna Samra, Jonathan Franklin, Christopher Chan Miller, Xiong Liu, Eamon Conway, Kelly Chance, Scott Milligan, and Steven Wofsy
Atmos. Meas. Tech., 14, 3737–3753, https://doi.org/10.5194/amt-14-3737-2021, https://doi.org/10.5194/amt-14-3737-2021, 2021
Short summary
Short summary
Given the high global warming potential of CH4, the identification and subsequent reduction of anthropogenic CH4 emissions presents a significant opportunity for climate change mitigation. Satellites are an integral piece of this puzzle, providing data to quantify emissions at a variety of spatial scales. This work presents the spectral calibration of MethaneAIR, the airborne instrument used as a test bed for the forthcoming MethaneSAT satellite.
Marek Šmíd, Geiland Porrovecchio, Jiří Tesař, Tim Burnitt, Luca Egli, Julian Grőbner, Petr Linduška, and Martin Staněk
Atmos. Meas. Tech., 14, 3573–3582, https://doi.org/10.5194/amt-14-3573-2021, https://doi.org/10.5194/amt-14-3573-2021, 2021
Short summary
Short summary
We designed and developed a tuneable and portable radiation source (TuPS) to provide a reference wavelength scale, with a bandwidth of emitted radiation of 0.13 nm and uncertainty in wavelength of 0.02 nm. TuPS was successfully used for the in-field characterization of 14 Dobson spectrophotometers in campaigns in Europe. The line spread functions of Dobsons measured by TuPS in conjunction with the cross-sections from IUP improves the consistency between the Dobson and Brewer from 3 % to 1 %.
Cited articles
Bennett, H. E., Silver, M., and Ashley, E. J.: Infrared Reflectance of Aluminum Evaporated in Ultra-High Vacuum, J. Opt. Soc. Am., 53, 1089–1095, https://doi.org/10.1364/JOSA.53.001089, 1963.
Bennett, J. M. and Ashley, E. J.: Infrared Reflectance and Emittance of Silver and Gold Evaporated in Ultrahigh Vacuum, Appl. Opt., 4, 221–224, https://doi.org/10.1364/AO.4.000221, 1965.
Chu, C.-T., Alaan, D. R., and Taylor, D. P.: Accelerated atmospheric corrosion testing of electroplated gold mirror coatings, in: Proc. SPIE 7786, Current Developments in Lens Design and Optical Engineering XI; and Advances in Thin Film Coatings VI, edited by: Johnson, R. B., Mahajan, V. N., and Thibault, S., vol. 7786 of Proc. SPIE, SPIE, San Diego, California, USA, 77860J, https://doi.org/10.1117/12.858779, 2010.
Deutsche Edelstahlwerke: Schematic “family tree” of the austenitic stainless steels, http://www.dew-stahl.com/fileadmin/files/dew-stahl.com/documents/Publikationen/Werkstoffdiagramme/05_austenitische_Staehle_en.pdf, last access: 7 April, 2016.
European Committee for Standardization (CEN): Stainless steels – Part 3: Technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes, Tech. Rep. EN 10088-3:2014, CEN-CENELEC Management Centre, Brussels, Belgium, 2014.
Feist, D. G., Arnold, S. G., John, N., and Geibel, M. C.: TCCON data from Ascension Island, Saint Helena, Ascension and Tristan da Cunha, Release GGG2014R0, TCCON data archive, hosted by the Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, https://doi.org/10.14291/tccon.ggg2014.ascension01.R0/1149285, 2014.
Geibel, M. C., Gerbig, C., and Feist, D. G.: A new fully automated FTIR system for total column measurements of greenhouse gases, Atmos. Meas. Tech., 3, 1363–1375, https://doi.org/10.5194/amt-3-1363-2010, 2010.
Kiel, M., Wunch, D., Wennberg, P. O., Toon, G. C., Hase, F., and Blumenstock, T.: Improved retrieval of gas abundances from near-infrared solar FTIR spectra measured at the Karlsruhe TCCON station, Atmos. Meas. Tech., 9, 669–682, https://doi.org/10.5194/amt-9-669-2016, 2016.
Krijger, J. M., Snel, R., van Harten, G., Rietjens, J. H. H., and Aben, I.: Mirror contamination in space I: mirror modelling, Atmos. Meas. Tech., 7, 3387–3398, https://doi.org/10.5194/amt-7-3387-2014, 2014.
Kurylo, M. J. and Zander, R.: The NDSC – its status after 10 years of operation, in: Proc. XIX Quadrennial Ozone Symposium, Hokkaido University, Sapporo, Japan, 167–168, 2000.
Ordal, M. A., Bell, R. J., Alexander, R. W., Newquist, L. A., and Querry, M. R.: Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths, Appl. Opt., 27, 1203–1209, https://doi.org/10.1364/AO.27.001203, 1988.
Polyanskiy, M. N.: Refractive index database, available at: http://refractiveindex.info, last access: 19 February, 2016.
Rakić, A. D., Djurišić, A. B., Elazar, J. M., and Majewski, M. L.: Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt., 37, 5271–5283, https://doi.org/10.1364/AO.37.005271, 1998.
Rothman, L., Gordon, I., Babikov, Y., Barbe, A., Benner, D. C., Bernath, P., Birk, M., Bizzocchi, L., Boudon, V., Brown, L., Campargue, A., Chance, K., Cohen, E., Coudert, L., Devi, V., Drouin, B., Fayt, A., Flaud, J.-M., Gamache, R., Harrison, J., Hartmann, J.-M., Hill, C., Hodges, J., Jacquemart, D., Jolly, A., Lamouroux, J., Roy, R. L., Li, G., Long, D., Lyulin, O., Mackie, C., Massie, S., Mikhailenko, S., Müller, H., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E., Richard, C., Smith, M., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G., Tyuterev, V., and Wagner, G.: The HITRAN2012 molecular spectroscopic database, 40, 4–50, https://doi.org/10.1016/j.jqsrt.2013.07.002, 2013.
Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The Total Carbon Column Observing Network, Phil. Trans. R. Soc. A, 369, 2087–2112, https://doi.org/10.1098/rsta.2010.0240, 2011.
Wunch, D., Toon, G. C., Sherlock, V., Deutscher, N. M., Liu, C., Feist, D. G., and Wennberg, P. O.: The Total Carbon Column Observing Network's GGG2014 Data Version, https://doi.org/10.14291/tccon.ggg2014.documentation.R0/1221662, 2015.
Short summary
Optical equipment is usually not made for harsh environments. At our atmospheric observation site on Ascension Island, commercially available optical mirrors were destroyed within weeks after being installed outside. To be able to continue our observations, we had to develop rugged optical mirrors that are able to sustain sea salt spray, volcanic dust, and regular cleaning without loosing their reflectivity and without adverse effects on the retrieval quality.
Optical equipment is usually not made for harsh environments. At our atmospheric observation...