Articles | Volume 12, issue 9
Atmos. Meas. Tech., 12, 4659–4676, 2019
https://doi.org/10.5194/amt-12-4659-2019

Special issue: The 10th International Carbon Dioxide Conference (ICDC10)...

Atmos. Meas. Tech., 12, 4659–4676, 2019
https://doi.org/10.5194/amt-12-4659-2019

Research article 02 Sep 2019

Research article | 02 Sep 2019

Bayesian atmospheric tomography for detection and quantification of methane emissions: application to data from the 2015 Ginninderra release experiment

Laura Cartwright et al.

Related authors

Performance of an open-path near-infrared measurement system for measurements of CO2 and CH4 during extended field trials
Nicholas M. Deutscher, Travis A. Naylor, Christopher G. R. Caldow, Hamish L. McDougall, Alex G. Carter, and David W. T. Griffith
Atmos. Meas. Tech., 14, 3119–3130, https://doi.org/10.5194/amt-14-3119-2021,https://doi.org/10.5194/amt-14-3119-2021, 2021
Short summary
Validation of Methane and Carbon Monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations
Mahesh Kumar Sha, Bavo Langerock, Jean-François L. Blavier, Thomas Blumenstock, Tobias Borsdorff, Matthias Buschmann, Angelika Dehn, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Michel Grutter, James W. Hannigan, Frank Hase, Pauli Heikkinen, Christian Hermans, Laura T. Iraci, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Nicolas Kumps, Jochen Landgraf, Alba Lorente, Emmanuel Mahieu, Maria V. Makarova, Johan Mellqvist, Jean-Marc Metzger, Isamu Morino, Tomoo Nagahama, Justus Notholt, Hirofumi Ohyama, Ivan Ortega, Mathias Palm, Christof Petri, David F. Pollard, Markus Rettinger, John Robinson, Sébastien Roche, Coleen M. Roehl, Amelie N. Röhling, Constantina Rousogenous, Matthias Schneider, Kei Shiomi, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, Osamu Uchino, Voltaire A. Velazco, Mihalis Vrekoussis, Pucai Wang, Thorsten Warneke, Tyler Wizenberg, Debra Wunch, Shoma Yamanouchi, Yang Yang, and Minqiang Zhou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-36,https://doi.org/10.5194/amt-2021-36, 2021
Preprint under review for AMT
Short summary
Synergetic use of IASI and TROPOMI space borne sensors for generating a tropospheric methane profile product
Matthias Schneider, Benjamin Ertl, Christopher J. Diekmann, Farahnaz Khosrawi, Amelie N. Röhling, Frank Hase, Darko Dubravica, Omaira E. García, Eliezer Sepúlveda, Tobias Borsdorff, Jochen Landgraf, Alba Lorente, Huilin Chen, Rigel Kivi, Thomas Laemmel, Michel Ramonet, Cyril Crevoisier, Jérome Pernin, Martin Steinbacher, Frank Meinhardt, Nicholas M. Deutscher, David W. T. Griffith, Voltaire A. Velazco, and David F. Pollard
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-31,https://doi.org/10.5194/amt-2021-31, 2021
Preprint under review for AMT
Short summary
Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements
Alba Lorente, Tobias Borsdorff, Andre Butz, Otto Hasekamp, Joost aan de Brugh, Andreas Schneider, Lianghai Wu, Frank Hase, Rigel Kivi, Debra Wunch, David F. Pollard, Kei Shiomi, Nicholas M. Deutscher, Voltaire A. Velazco, Coleen M. Roehl, Paul O. Wennberg, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 14, 665–684, https://doi.org/10.5194/amt-14-665-2021,https://doi.org/10.5194/amt-14-665-2021, 2021
Short summary
Was Australia a sink or source of CO2 in 2015? Data assimilation using OCO-2 satellite measurements
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-16,https://doi.org/10.5194/acp-2021-16, 2021
Preprint under review for ACP
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Emissions relationships in western forest fire plumes – Part 1: Reducing the effect of mixing errors on emission factors
Robert B. Chatfield, Meinrat O. Andreae, ARCTAS Science Team, and SEAC4RS Science Team
Atmos. Meas. Tech., 13, 7069–7096, https://doi.org/10.5194/amt-13-7069-2020,https://doi.org/10.5194/amt-13-7069-2020, 2020
Short summary
The high frequency response correction of eddy covariance fluxes. Part 1: an experimental approach for analysing noisy measurements of small fluxes
Toprak Aslan, Olli Peltola, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-478,https://doi.org/10.5194/amt-2020-478, 2020
Revised manuscript accepted for AMT
Short summary
Uncertainty of the hourly average concentration values derived from non-continuous measurements
László Haszpra and Ernő Prácser
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-409,https://doi.org/10.5194/amt-2020-409, 2020
Revised manuscript accepted for AMT
Short summary
A new method to correct the electrochemical concentration cell (ECC) ozonesonde time response and its implications for “background current” and pump efficiency
Holger Vömel, Herman G. J. Smit, David Tarasick, Bryan Johnson, Samuel J. Oltmans, Henry Selkirk, Anne M. Thompson, Ryan M. Stauffer, Jacquelyn C. Witte, Jonathan Davies, Roeland van Malderen, Gary A. Morris, Tatsumi Nakano, and Rene Stübi
Atmos. Meas. Tech., 13, 5667–5680, https://doi.org/10.5194/amt-13-5667-2020,https://doi.org/10.5194/amt-13-5667-2020, 2020
Short summary
Monitoring the compliance of sailing ships with fuel sulfur content regulations using unmanned aerial vehicle (UAV) measurements of ship emissions in open water
Fan Zhou, Liwei Hou, Rui Zhong, Wei Chen, Xunpeng Ni, Shengda Pan, Ming Zhao, and Bowen An
Atmos. Meas. Tech., 13, 4899–4909, https://doi.org/10.5194/amt-13-4899-2020,https://doi.org/10.5194/amt-13-4899-2020, 2020
Short summary

Cited articles

Ars, S., Broquet, G., Yver Kwok, C., Roustan, Y., Wu, L., Arzoumanian, E., and Bousquet, P.: Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions, Atmos. Meas. Tech., 10, 5017–5037, https://doi.org/10.5194/amt-10-5017-2017, 2017. a, b
Basu, S., Baker, D. F., Chevallier, F., Patra, P. K., Liu, J., and Miller, J. B.: The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2, Atmos. Chem. Phys., 18, 7189–7215, https://doi.org/10.5194/acp-18-7189-2018, 2018. a
Berliner, L. M.: Hierarchical Bayesian time series models, in: Maximum Entropy and Bayesian Methods, edited by: Hanson, K. M. and Silver, R. N., Springer, New York, NY, 15–22, 1996. a
Borysiewicz, M., Wawrzynczak, A., and Kopka, P.: Stochastic algorithm for estimation of the model's unknown parameters via Bayesian inference, Proceedings of the Federated Conference on Computer Science and Information Systems, Wroclaw, Poland, 501–508, 2012. a, b
Casella, G. and Berger, R. L.: Statistical Inference, 2nd edn., Duxbury Press, Pacific Grove, CA, 2002. a
Download
Short summary
Despite extensive research, emission detection and quantification of greenhouse gases (GHGs) remain an open problem. This article presents a novel statistical framework for detecting and quantifying methane emissions and showcases its efficacy on data collected from different instruments in the 2015 Ginninderra controlled-release experiment. The developed techniques can be used to aid GHG emission reduction schemes by, for example, detecting and quantifying leaks from carbon storage facilities.