Articles | Volume 9, issue 5
https://doi.org/10.5194/amt-9-1961-2016
https://doi.org/10.5194/amt-9-1961-2016
Research article
 | 
03 May 2016
Research article |  | 03 May 2016

Methane cross-validation between three Fourier transform spectrometers: SCISAT ACE-FTS, GOSAT TANSO-FTS, and ground-based FTS measurements in the Canadian high Arctic

Gerrit Holl, Kaley A. Walker, Stephanie Conway, Naoko Saitoh, Chris D. Boone, Kimberly Strong, and James R. Drummond

Related authors

Simulating the effects of mid- to upper-tropospheric clouds on microwave emissions in EC-Earth using COSP
M. S. Johnston, G. Holl, J. Hocking, S. J. Cooper, and D. Chen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-11753-2015,https://doi.org/10.5194/amtd-8-11753-2015, 2015
Preprint withdrawn

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Validation and Intercomparisons
First validation of high-resolution satellite-derived methane emissions from an active gas leak in the UK
Emily Dowd, Alistair J. Manning, Bryn Orth-Lashley, Marianne Girard, James France, Rebecca E. Fisher, Dave Lowry, Mathias Lanoisellé, Joseph R. Pitt, Kieran M. Stanley, Simon O'Doherty, Dickon Young, Glen Thistlethwaite, Martyn P. Chipperfield, Emanuel Gloor, and Chris Wilson
Atmos. Meas. Tech., 17, 1599–1615, https://doi.org/10.5194/amt-17-1599-2024,https://doi.org/10.5194/amt-17-1599-2024, 2024
Short summary
Ship- and aircraft-based XCH4 over oceans as a new tool for satellite validation
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Prabir K. Patra, Shin-ichiro Nakaoka, Toshinobu Machida, Isamu Morino, André Butz, and Kei Shiomi
Atmos. Meas. Tech., 17, 1297–1316, https://doi.org/10.5194/amt-17-1297-2024,https://doi.org/10.5194/amt-17-1297-2024, 2024
Short summary
Single-blind test of nine methane-sensing satellite systems from three continents
Evan D. Sherwin, Sahar H. El Abbadi, Philippine M. Burdeau, Zhan Zhang, Zhenlin Chen, Jeffrey S. Rutherford, Yuanlei Chen, and Adam R. Brandt
Atmos. Meas. Tech., 17, 765–782, https://doi.org/10.5194/amt-17-765-2024,https://doi.org/10.5194/amt-17-765-2024, 2024
Short summary
Water vapor measurements inside clouds and storms using a differential absorption radar
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024,https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary
Evaluation of the first year of Pandora NO2 measurements over Beijing and application to satellite validation
Ouyang Liu, Zhengqiang Li, Yangyan Lin, Cheng Fan, Ying Zhang, Kaitao Li, Peng Zhang, Yuanyuan Wei, Tianzeng Chen, Jiantao Dong, and Gerrit de Leeuw
Atmos. Meas. Tech., 17, 377–395, https://doi.org/10.5194/amt-17-377-2024,https://doi.org/10.5194/amt-17-377-2024, 2024
Short summary

Cited articles

Amante, C. and Eakins, B.: ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, Tech. rep., NOAA NESDIS NGDC, Boulder, CO, USA, 2009.
Batchelor, R. L., Strong, K., Lindenmaier, R., Mittermeier, R. L., Fast, H., Drummond, J. R., and Fogal, P. F.: A new Bruker IFS 125HR FTIR Spectrometer for the polar environment atmospheric research laboratory at Eureka, Nunavut, Canada: measurements and comparison with the existing Bomem DA8 spectrometer, J. Atmos. Ocean. Tech., 26, 1328–1340, https://doi.org/10.1175/2009JTECHA1215.1, 2009.
Boone, C. D., Nassar, R., Walker, K. A., Rochon, Y., McLeod, S. D., Rinsland, C. P., and Bernath, P. F.: Retrievals for the Atmospheric Chemistry Experiment Fourier-Transform Spectrometer, Appl. Optics, 44, 7218–7231, 2005.
Boone, C. D., Walker, K. A., and Bernath, P. F.: Version 3 retrievals for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), in: The Atmospheric Chemistry Experiment ACE at 10: A Solar Occultation Anthology, edited by: Bernath, P. F., A. Deepak Publishing, Hampton, Virginia, USA, 103–127, 2013.
Download
Short summary
Methane is a powerful greenhouse gas, and we need to measure it globally with satellite instruments. We compare measurements from two satellites with measurements from the ground in Eureka, Nunavut, Canada to assess their different strengths and weaknesses. The differences between measurements are discussed and assessed considering the details of each measurement technique and processing. Recommendations are provided for utilization of these data sets for monitoring methane in the high Arctic.